ARTICLE IN PRESS

Journal of Genetic Engineering and Biotechnology xxx (2017) xxx-xxx

HOSTED BY

Contents lists available at ScienceDirect

Journal of Genetic Engineering and Biotechnology

journal homepage: www.elsevier.com/locate/jgeb

Original Article

Study the influence of culture conditions on rennin production by *Rhizomucor miehei* using solid-state fermentations

Houthail Alahmad Aljammas*, Hassan Al Fathi, Walid Alkhalaf

Department of Food Science, Agriculture Engineering Faculty, Al-Furat University, Deirazzor, Syria

ARTICLE INFO

Article history:
Received 1 July 2017
Received in revised form 30 September 2017
Accepted 5 October 2017
Available online xxxx

Keywords: Rennin Rhizomucor miehei Solid-state fermentation

ABSTRACT

Investigations were conducted on the production of Rennin enzyme from the fungi *Rhizomucor miehei* 3420 NRRL using Solid-State fermentation. Wheat bran was used as a substrate. The influence of moisture content, incubation temperature, and the initial pH of fermentation medium were studied. The protein content, milk clotting activity (MCA), specific activity, proteolytic activity (PA), and (MCA/PA) ratio of the extracted enzyme were calculated after 4 days of incubation to evaluate the quality of the enzyme. The results showed that the optimal conditions for production were as follows: incubation temperature of 40 °C, moisture content of 60%, and pH of (3). Under these conditions, a production process of Rennin enzyme was established, and the values of protein content, milk clotting activity, specific activity, proteolytic activity, and (MCA/PA) ratio reached to 4 mg/mL, 600 SU/mL, 150 SU/mg, 45 PU/mL, 13.3 respectively.

© 2017 Production and hosting by Elsevier B.V. on behalf of Academy of Scientific Research & Technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Rennin enzyme (chymosin) is used in the manufacture of cheese, it is also known as acidic protease. The coagulation of milk by rennin takes place in two stages: During the first stage or the enzymatic phase, casein is hydrolyzed by rennin, thus releasing of para-casein which form the curd in the second stage (non-enzymatic phase) [17].

Rennet is extracted from the fourth stomach of an un weaned calves, and it's purified active components are called rennin.

The world wide increase in cheese production coupled with reduced supply of calf rennet have led to an increase in the demand for alternative source of milk coagulants.

Animal and plant coagulants have been used as rennet substitutes, but these have showed unsatisfactory properties, in addition to microbial coagulants which have gained wide acceptance.

Extensive researches have been carried out so far on some species of bacteria and fungi like *Aspergillus oryzae*, *Irpeslactis* [15,8,16], *Rhizopus* sp. [26,7].

Many Microorganisms are known to produce proteases, but it's coagulants is not suitable as substitutes for calf rennet.

Peer review under responsibility of National Research Center, Egypt.

E-mail address: houthail@hotmail.com (H.A. Aljammas).

The bacterial proteases have proved to be unsuitable because of its high nonspecific proteolysis activity. Recently studies have focused on three fungal strains to produce microbial rennet namely *Rhizomucor miehei*, *Endothia parastica*, *Rhizomucor pussilus* [27,10,23,11].

The protease of *Rhizomucor miehei* is the preferred substitute for calf rennet because of its specificity in splitting of peptide bonds in kappa-casein similar to calf rennet [5], high ratio of milk coagulating activity, identical calcium requirements, good cheese quality [10] and lower incidence of bitter flavor in cheese curd [28].

In general, two types of fermentation systems are used in biotechnology processes: solid-state fermentation (SSF) and liquid state fermentation (LSF).

Submerged fermentation (SmF) or liquid State fermentation (LSF) are usually carried out with a substrate which is either dissolved or remains suspended in an aqueous medium, and it is suited for microorganisms such as bacteria that require high moisture [25], it is expensive and requires more complex equipment. Substrate is quickly consumed so there is need to add and replace it constantly.

Solid-state fermentation (SSF) has been defined as the fermentation process occurring in the absence or near-absence of free water.

SSF has a higher productivity compared to (SmF), use of raw materials and agro-industrial residues solves the pollution problem and reduce material cost. The lower water activity of the fer-

https://doi.org/10.1016/j.jgeb.2017.10.004

1687-157X/© 2017 Production and hosting by Elsevier B.V. on behalf of Academy of Scientific Research & Technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article in press as: Aljammas HA et al. Study the influence of culture conditions on rennin production by *Rhizomucor miehei* using solid-state fermentations. Journal of Genetic Engineering and Biotechnology (2017), https://doi.org/10.1016/j.jgeb.2017.10.004

^{*} Corresponding author.

2

mentation medium reduces the contamination risk especially by bacteria and yeast. Capital cost, energy expenditure and cost of downstream process are lower than SmF [20,12].

Substrates are consumed very slowly and constantly. Hence, there is no need to supply the substrate for longer time. SSF does not require highly advanced technology, the size of reactor is small, simply in ventilation systems, consuming less energy, and occupy less space [2].

In biotechnological processes, natural raw material, or recyclable waste material such as lignin, bran, wheat flour, rice flour, cotton, yeast extract, soy powder, beet molasses, starch, and cellulose are widely used as substrate. Wheat bran is a good choice for industrial production of enzymes. It contains 65% carbohydrate, 16% protein, phosphate, calcium, iron, copper, magnesium, phosphate, potassium, sodium, zing, chlorine, lipids and vitamins B1, B2, B3, E, K [30] and it is exclusively suitable for use in production of fungal enzymes [24].

Despite the widespread use of solid-state fermentation, Not enough information is available on kinetics of reactions in SSF systems. This is mainly because of difficulties involved in the measurements of growth parameters, analysis of cellular growth and determination of substrate consumption, etc., which is caused due to heterogeneous nature of the substrate, which are structurally and nutritionally complex [19]. In this paper we studied the influence of culture conditions on protease biosynthesis by *Rhizomucor miehei* under solid state fermentation to optimize rennin production process, and we have investigated the interactions in SSF systems.

2. Materials and methods

Fungal strain: *Rhizomucor miehei* EMCC 841 (NRRL 3420) was obtained from Cairo MIRCEN - Faculty of Agriculture, Ain Shams University. It was maintained on (PDA) slants and stored in refrigerator at 4 °C for further use.

Inoculation medium: molds from slants were used to inoculate roux flasks containing 100 mL of (PDA). The inoculated flasks were incubated at 37 °C for 4 days. The inoculum was obtained by scraping the PDA surface in the present of 200 mL sterilized distilled water. Concentration of spore suspension was determined by counting on an advanced Neubauer Counting chamber and then was used for the inoculation of the fermentation medium.

Fermentation medium: wheat bran was used as the base material. Acidic mineral salt solution was prepared of the composition (g/L); ZnSO4·7H2O: 0.07, MgSO4·7H2O: 0.07, CuSO4·7H2O: 0.07, FeSO4: 0.09; 0.2 N HCl. 10 mL of this solution was diluted to 1 L [27]. Appropriate volume of this final solution was added to 100 g of wheat bran to obtain the desired initial moisture content, 20 g of the moist wheat bran was distributed in 250 mL Erlenmeyer flasks, and autoclaved for 20 min at 121 °C. After cooling, the flasks were inoculated with the spore suspension with the ratio of 10⁶ spores/g. The cultivation was carried out at different temperatures for 4 days [1].

2.1. Optimization of Cultural parameters

Effect of moisture content: different volumes of the mineral solution were added in order to obtain the moisture content values of (10-80% v/w).

Effect of temperature: To investigate the effect of temperature, fermentation was conducted at the temperatures of (30–50 °C).

Effect of initial pH: appropriate volumes of HCl solution were added to reach to different initial pH of the fermentation medium (2, 2.5, 3), (including the moistening solution to maintain the desirable moisture content).

Enzyme extraction: After incubation period, 100 mL of distilled water were added to the solid fermentation medium. The content was shaken at 200 rpm for 1 h at 4–10 °C. The extract were filtered through (whatman paper No. 1), the filtrate obtained was centrifuged at 6000 rpm for 20 min at 4 °C. The supernatant was used as crude enzyme source.

Protein content: was determined according to the method of Lowry et al. [14].

2.2. Enzyme activity

Milk clotting activity (MCA): MCA was determined according to the method of [3] and expressed in terms of Soxhlet Units.

(S.U.). One Soxhlet unit is defined as the quantity of enzyme required to clot one mL of substrate containing 0.1 g skimmed milk powder and 0.0014 g calcium chloride in 40 min at 37 °C and was calculated with the formula: unit of milk-clotting activity.(U) = 2400/T * S/Ewhere T is the time necessary for clot formation, S is the milk volume and E is the enzyme volume.

Proteolytic activity (PA): was determined according to the method of [13] using casein as a substrate. One mL of 1% casein in 0.1 M (Sorensen buffer) (pH 6.7) and 1 mL of enzyme were incubated at 35 °C for 20 min. The reaction was terminated by addition of 3 mL of 5% trichloro acetic acid solution and was centrifuged at 5000 rpm for 10 min at 10 °C. Absorbance was measured at 280 nm. One unit of protease activity was defined as the activity which gives rise, under the conditions described, to an increase of one unit of optical density at 280 nm per minute digestion.

2.3. Experimental design and statistical analysis

The experiments were designed by changing one factor at a time by three replicates per treatment and averaged. All the results were analyzed using analysis of variance test (ANOVA) and the least significant difference (LSD) at a significant level of 0.01 using IBM SPSS Statics 21.

3. Results and discussion

3.1. Moisture content effect

After inoculation, the flasks were incubated at 37 °C for 4 days at different moisture content (10–80% v/w) with 10% intervals, and the protease production was studied for each treatment.

At the moisture content of 30%, the enzyme excretion was low and the enzyme activity was negligible, the moisture content at this level probably is not enough for the fungal growth, This could be explained by The low solubility of nutrients in the solid substrates, a lower degree of substrates swelling, and higher water tension.

The protein content and enzyme activity was affected by increasing in moisture content up to 40% significantly, and there were no significant differences at 50% except proteolytic activity, but with increasing in moisture content up to 60% there was a significant difference at all indicators and the maximum enzyme production was observed at this level. High moisture content may lead to increase in nutrient solubility, also the absorption of water by wheat bran particles lead to swallowing which increase in its surface area.

The higher moisture content levels (70–80%) led to reduction in the enzyme production, This could be explained by the decrease in porosity, loss of particulate structure, development of stickiness, reduction in gas volume, decreased gas exchange and enhanced formation of aerial mycelium [18].

Download English Version:

https://daneshyari.com/en/article/8416395

Download Persian Version:

https://daneshyari.com/article/8416395

<u>Daneshyari.com</u>