

Contents lists available at ScienceDirect

Nonlinear Analysis

Asymptotically self-similar solutions of the damped wave equation

M. Hamza*

Lab d'Analyse numérique et EDP, Université de Paris-Sud, France

ARTICLE INFO

Article history: Received 12 January 2010 Accepted 14 June 2010

MSC: 35B40 35C20

35L05 35B30

Keywords:
Damped wave equation
Self-similar variables
Asymptotic behavior
Self-similar solutions

ABSTRACT

We consider the damped hyperbolic equation

$$\varepsilon u_{\tau\tau} + u_{\tau} = (a(\xi)u_{\xi})_{\xi} - |u|^{p-1}u, \quad (\xi, \tau) \in \mathbb{R} \times \mathbb{R}_{+}, \tag{1}$$

where $\varepsilon > 0$, $a(\xi) \to 1$ as $|\xi| \to +\infty$ and 1 .

We prove in this article that the exact self-similar solutions of the semi-linear parabolic equation obtained by setting $\varepsilon=0$ and $a(\xi)\equiv 1$ in (1) are also asymptotically stable self-similar solutions of the Eq. (1). The proof of our result relies on various energy estimates rewritten in the variables $\xi/\sqrt{\tau}$, $\ln \tau$.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we study the asymptotic stability of the solution of the damped hyperbolic equation given as follows:

$$\varepsilon u_{\tau\tau} + u_{\tau} = (a(\xi)u_{\xi})_{\xi} - |u|^{p-1}u, \quad (\xi, \tau) \in \mathbb{R} \times \mathbb{R}_{+}, \tag{1.1}$$

where ε is a positive, (not necessarily small) parameter, and $p \in]1, 3[$. We assume that the diffusion coefficient $a(\xi)$ is positive and satisfies $\lim_{\xi \to \pm \infty} a(\xi) = 1$.

Equations of type (1.1) are commonly used as mathematical models in several fields dealing with spreading and interacting particles: especially in genetics and population dynamics; see for example [1,2]. In the case of an inhomogeneous medium, the diffusion coefficients in such equations may depend on the space variable ξ .

In the case p>3, Gallay and Raugel [3] have studied the stability of small solutions of Eq. (1.1) under the hypothesis $\lim_{\xi\to\pm\infty}a(\xi)=a_\pm>0$. In fact, they introduced scaling variables and used energy estimates to show that the asymptotic behavior of a small solution $u(\xi,\tau)$ of Eq. (1.1) is entirely determined, up to the second order, by a linear parabolic equation depending only on a_\pm .

In the case $\varepsilon = 0$ and $a(\xi) \equiv 1$, Eq. (1.1) reduces to the following semi-linear parabolic equation:

$$u_{\tau} = u_{\xi\xi} - |u|^{p-1}u. \tag{1.2}$$

The asymptotic behavior of Eq. (1.2) has been rather extensively studied. We here recall some known results. First, we remark that if $u(\xi,\tau)$ is a solution of Eq. (1.2), then for all $\lambda>0$, $u_{\lambda}(\xi,\tau)=\lambda^{\frac{2}{p-1}}u(\lambda^2\tau,\lambda\xi)$ is also a solution. A solution $u\neq 0$ is said to be self-similar, when $u_{\lambda}\equiv u$, for all $\lambda>0$.

^{*} Corresponding address: Universite de Tunis El-Manar, Departement de mathematiques, Faculte des Sciences de Tunis, Campus Universitaire 1060, Tunis, Tunisia.

E-mail addresses: mohamed-ali.hamza@math.u-psud.fr, ma.hamza@fst.rnu.tn.

In the *N* multidimensional case, with $1 , we already know that if Eq. (1.2) has a self-similar solution with initial data <math>u_0$, then u_0 is homogenous of degree $\frac{2}{1-p}$. On the other hand, Cazenave, Dickstein, Escobedo and Weissler [4] have shown, among many other results, that there exists a unique self-similar solution \widetilde{u} of Eq. (1.2) such that

$$\lim_{|\xi| \to +\infty} |\xi|^{\frac{2}{p-1}} (\widetilde{u}(\xi, 1) - u_0(\xi)) = 0.$$
 (1.3)

These self-similar solutions are related to the asymptotic behavior of u solution of Eq. (1.2) in the following sense: suppose that there exist ω , a homogenous function of degree 0, and $u_0 \in \mathcal{C}(\mathbb{R})$ an asymptotically homogenous function in space in the following sense:

$$\lim_{|\xi| \to +\infty} |\xi|^{\frac{2}{p-1}} u_0(\xi) - \omega\left(\frac{\xi}{|\xi|}\right) = 0. \tag{1.4}$$

Assume in addition that $u_0 \ge 0$, $u_0 \ne 0$. Then, the solution u of Eq. (1.2) is asymptotically self-similar in the sense that

$$\lim_{\tau \to +\infty} \sup_{\xi \in \mathbb{R}} \left((\tau + |\xi|^2)^{\frac{1}{p-1}} \left(u(\xi, \tau) - \widetilde{u}(\xi, \tau) \right) \right) = 0. \tag{1.5}$$

Recently, in [5], the authors proved that if the initial data does not behave asymptotically like the profile, as in (1.4), in a certain precise way, then the solution is not asymptotically self-similar. In the same way, an instability result has been established in [6,7].

Returning now to the one-dimensional case, a self-similar solution of Eq. (1.2) has the form $u(\xi, \tau) = \tau^{-\frac{1}{p-1}} f\left(\frac{\xi}{\sqrt{\tau}}\right)$, where f satisfies an ordinary differential equation

$$f''(x) + \frac{x}{2}f'(x) + \frac{1}{p-1}f(x) - |f(x)|^{p-1}f(x) = 0, \quad \text{in } \mathbb{R}_+.$$
 (1.6)

Here we restrict our study to positive self-similar solutions satisfying f'(0)=0. As shown in [8–10], for $p\in]1,3[$ and $\gamma\in [\gamma_p,\gamma^*[$, where $0<\gamma_p<\gamma^*=(p-1)^{-\frac{1}{p-1}}$, there exists a smooth, even, positive solution f_γ of Eq. (1.6) such that $f_\gamma(0)=\gamma$. Moreover, the function

$$c: [\gamma_p, \gamma^*[\longrightarrow [0, +\infty[$$

$$\gamma \longmapsto \lim_{n \to \infty} x^{\frac{2}{p-1}} f_{\gamma}(x), \tag{1.7}$$

is a bijection. On the other hand, the decay at infinity of these solutions f_{ν} is as follows (see [8]):

for
$$\gamma > \gamma_p$$
, $f_{\gamma}(x) = c(\gamma)|x|^{\frac{-2}{p-1}} + \mathcal{O}\left(|x|^{\frac{-2}{p-1}-2}\right)$, as $|x| \to +\infty$,
for $\gamma = \gamma_p$, $f_{\gamma}(x) = c(\gamma_p)|x|^{\frac{2}{p-1}-1} e^{-\frac{x^2}{4}} + \mathcal{O}\left(|x|^{\frac{2}{p-1}-3}e^{-\frac{x^2}{4}}\right)$, as $|x| \to +\infty$, (1.8)

where $c(\gamma)$ is defined by (1.7) and $c(\gamma_p)$ is a positive constant. Moreover,

for
$$\gamma > \gamma_p$$
, $\frac{f_{\gamma}'(x)}{f_{\gamma}(x)} = \frac{-2}{p-1}|x|^{-1} + \mathcal{O}(|x|^{-3})$, as $|x| \to +\infty$. (1.9)

The stability of these self-similar solutions has been widely studied (see for example [11,12,10,13,14]).

For instance, using the properties (1.8), Escobedo, Kavian and Matano [9] have shown that, for $\gamma \in [\gamma_p, \gamma^*[$, for initial data $u(\xi, 1)$, at $\tau = 1$ near $f_{\gamma}(\xi)$ in the space $L^{\infty}\left(\mathbb{R}, \left(1+|x|^{\frac{2}{p-1}}\right)\right)$ and $\lim_{|\xi|\to +\infty} |\xi|^{\frac{2}{p-1}}u(\xi, 1) = \lim_{|\xi|\to +\infty} |\xi|^{\frac{2}{p-1}}f_{\gamma}(\xi)$, there exists a unique global classical solution $u(\xi, \tau)$ of (1.2) $u(\xi, \tau)$ in the space $L^{\infty}\left([0, +\infty[, L^{\infty}\left(\mathbb{R}, \left(1+|x|^{\frac{2}{p-1}}\right)\right)\right)$, which moreover satisfies

$$\lim_{\tau \to +\infty} \left\| \tau^{\frac{1}{p-1}} u(\xi \sqrt{\tau}, \tau) - f_{\gamma}(\xi) \right\|_{L^{\infty}} = 0. \tag{1.10}$$

In a more recent paper, Bricmont and Kupiainen [15] have shown, that if $\gamma \in [\gamma_p, \gamma^*[$ and if the initial data $u(\xi, 1)$ are near $f_{\gamma}(\xi)$ in the weighted space $L^{\infty}(\mathbb{R}, (1+|x|^q))$, with $q>\frac{2}{p-1}$, Eq. (1.2) has a unique global classical solution $u(\xi, \tau)$ in the space $L^{\infty}([0, +\infty[, L^{\infty}(\mathbb{R}, (1+|x|^q))))$. Moreover, there exist $\mu>0$ and C>0 such that, for all $\tau\geq 1$,

$$\left\| \left[\tau^{\frac{1}{p-1}} u(\xi \sqrt{\tau}, \tau) - f_{\gamma}(\xi) \right] (1 + |\xi|^{q}) \right\|_{L^{\infty}} \le C \tau^{-\mu} \| [u(\xi, 1) - f_{\gamma}(\xi)] (1 + |\xi|^{q}) \|_{L^{\infty}}. \tag{1.11}$$

In the whole paper, we fix a positive number γ in $]\gamma_p, \gamma^*[$, and we denote by g_γ the self-similar positive solution $g_\gamma(\xi, \tau) = \tau^{-\frac{1}{p-1}} f_\gamma\left(\xi \tau^{-\frac{1}{2}}\right)$ of Eq. (1.2).

Download English Version:

https://daneshyari.com/en/article/841650

Download Persian Version:

https://daneshyari.com/article/841650

<u>Daneshyari.com</u>