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a b s t r a c t

We develop elements of calculus of variational sets for set-valued mappings, which were
recently introduced in Khanh and Tuan (2008) [1,2] to replace generalized derivatives in
establishing optimality conditions in nonsmooth optimization. Most of the usual calculus
rules, from chain and sum rules to rules for unions, intersections, products and other
operations on mappings, are established. Direct applications in stability and optimality
conditions for various vector optimization problems are provided.
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1. Introduction

In nonsmooth optimization, many generalized derivatives have been introduced to replace the Fréchet and Gateaux
derivatives which do not exist. Each of them is adequate for some classes of problems, but not all. In [1,2] we proposed
two kinds of variational sets for mappings between normed spaces. These subsets of the image space are larger than the
images of the pre-image space through known generalized set-valuedmappings. Hence our necessary optimality conditions
obtained by separation techniques are stronger than many known conditions using various generalized derivatives. Of
course, sufficient optimality conditions based on separations of bigger sets may be weaker. But in [1,2], using variational
sets we can establish sufficient conditions which have almost no gap with the corresponding necessary ones. The second
advantage of the variational sets is that we can define these sets of any order to get higher-order optimality conditions. This
feature is significant sincemany important and powerful generalized derivatives can be defined only for the first and second
orders and the higher-order optimality conditions available in the literature are much fewer than the first and second-order
ones. The third strong point of the variational sets is that almost no assumptions are needed to be imposed for their being
well-defined and nonempty and also for establishing optimality conditions. Calculating them from the definition is only a
computation of a Painlevé–Kuratowski limit. However, in [1,2] no calculus rules for variational sets are provided.

In the present paper we establish elements of calculus for variational sets to ensure that they can be used in practice.
Most of the usual rules, from the sum and chain rules to various operations in analysis, are investigated. It turns out that the
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variational sets possess many fundamental and comprehensive calculus rules. Although this construction is not comparable
with objects in the dual approach likeMordukhovich’s coderivatives (see the excellent books [3,4]) in enjoying rich calculus,
it may be better in dealing with higher-order properties. We pay attentions also on relations between the established
calculus rules and applications of some rules to get others. Of course, significant applications should be those in other topics
of nonlinear analysis and optimization. As such applications we provide a direct employment of sum rules to establishing
an explicit formula for a variational set of the solution map to a parameterized variational inequality in terms of variational
sets of the data. Furthermore, chain rules and sum and product rules are also used to prove optimality conditions for weak
solutions of some vector optimization problems.

The organization of the paper is as follows. The rest of this section is devoted to recalling definitions needed in the sequel.
We present the two kinds of higher-order variational sets, including various equivalent formulations and simple properties
in Section 2. In the next Section 3 we explore comprehensive calculus rules for the variational sets. We also try to illustrate
by example the unfortunate lack of expected rules. We present in Section 4 direct applications of chain rules and sum and
product rules obtained in Section 3 to considering stability and optimality conditions, as mentioned above.

Throughout the paper, if not otherwise specified, let X and Y be real normed spaces, C ⊆ Y a closed pointed convex
cone with nonempty interior and F : X → 2Y . For A ⊆ X , intA, clA (or Ā), bdA denote its interior, closure and boundary,
respectively. X∗ is the dual space of X and BX stands for the closed unit ball in X . For x0 ∈ X,U(x0) is used for the set of all
neighborhoods of x0 ∈ X . Rk

+
is the nonnegative orthant of the k-dimensional space. N stands for the set of natural numbers.

For r > 0 tending to 0, 0(r) and ϑ(r) mean a moving point z in the space in question (always clear from the context) such
that 1

r ‖z‖ → 0 and ‖z‖ → 0, respectively. We often use the following cones, for A ⊆ X, C above and u ∈ X ,

coneA = {λa | λ ≥ 0, a ∈ A},

cone+A = {λa | λ > 0, a ∈ A},

A(u) = cone(A + u),
C∗

= {y∗
∈ Y ∗

| ⟨y∗, c⟩ ≥ 0, ∀c ∈ C} (polar cone),
C♯

= {y∗
∈ Y ∗

| ⟨y∗, c⟩ > 0, ∀c ∈ C \ {0}} (quasi interior of C∗).

A nonempty convex subset B of a convex cone C is called a base of C if C = coneB and 0 ∉ clB.
For a set-valuedmap (known in the literature also as multimap or point-to-set map or multifunction or correspondence)

H : X → 2Y , the domain, graph and epigraph of H are defined as

domH = {x ∈ X : H(x) ≠ ∅}, grH = {(x, y) ∈ X × Y : y ∈ H(x)},
epiH = {(x, y) ∈ X × Y : y ∈ H(x) + C}.

The so-called profile mapping of H is H+ defined by H+(x) = H(x) + C . The Painlevé–Kuratowski (sequential) outer (or
upper) limit is defined by

Limsup
x
H
→x0

H(x) = {y ∈ Y | ∃xn ∈ domH : xn → x0, ∃yn ∈ H(xn), yn → y},

where x
H
→ x0 means that xn ∈ domH and xn → x0. The Painlevé–Kuratowski lower limit is

Liminf
x
H
→x0

H(x) = {y ∈ Y | ∀xn ∈ domH : xn → x0, ∃yn ∈ H(xn), yn → y}.

H is said to be compact at x0 ∈ cl(domH) if any sequence (xn, yn) ∈ grH has a convergent subsequence as soon as xn → x0.
The closure of H is the multimap clH , whose graph is defined as the closure of grH . Thus

clH(x0) = Limsup
x
H
→x0

H(x).

When clH(x0) = H(x0) we say that H is closed at x0.
For a subset A ⊆ X , the contingent cone of A at x0 ∈ X is

TA(x0) = {u ∈ X | ∃tn → 0+, ∃un → u, ∀n, x0 + tnun ∈ A}.

Assume that u1, . . . , um−1 ∈ X and m ∈ N. Themth-order contingent set of A at (x0, u1, . . . , um−1) is

Tm
A (x0, u1, . . . , um−1) = Limsup

t→0+

1
tm

(A − x0 − tu1 − · · · − tm−1um−1).

Themth-order adjacent set of A at (x0, u1, . . . , um−1) is

T bm
A (x0, u1, . . . , um−1) = Liminf

t→0+

1
tm

(A − x0 − tu1 − · · · − tm−1um−1).
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