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a b s t r a c t

For sets given as finite intersectionsA =
⋂K
k=1Ak the basic normal cone N(x̄;A) is given

as
∑
k N(x̄;Ak), but such a result is not, in general, available for infinite intersections.

A comparable characterization of N(x̄;A) is obtained here for a class of such infinite
intersections.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A fundamental concern in variational analysis is the characterization through first-order optimality conditions of the
solution of a constrained minimization problem

Minimize: f (x) subject to: x ∈ A. (1)

Under quite general conditions the first-order conditions on a local minimizer x̄ are known [1, Prop. 5.1] to take the form

− [∇f ] (x̄) ∈ N̂0(x̄;A) ⊂ N(x̄;A) (2)

where N(x̄;A) denotes the basic normal cone at x̄ ([2]; see Definitions 2.1 and 2.2) to the admissible setA. Thus we are led
to the task of computing N(x̄;A) from the specification provided forA.
Constraints in large-scale problems are often generated by replicating a limited number of constraint prototypes over

large index sets. In particular, we may consider, as prototype, constraints of the form ϕ ≥ 0 for a scalar function ϕ, noting
that the constraints in problem (1) are often given in the form of a family of such inequalities

Minimize: f (x) subject to: ϕ(x) ≥ 0 for ϕ ∈ Φ (3)

where Φ is a set of constraint functions ϕ : X → R. [While this set of inequalities could be subsumed by a single
inequality ϕ∗(x) ≥ 0 on taking ϕ∗(x) = inf{ϕ(x) : ϕ ∈ Φ}: this does not seem helpful. Indeed, we would have −epiϕ∗ =⋂
ϕ∈Φ{−epi(ϕ)} so the present consideration of infinite intersections seems as likely to help with differentiation of sup or

inf as the reverse situation. We also note that (3) is frequently seen with the inequality reversed, simply corresponding to
the replacement ϕ←[ −ϕ.]
Note that (3) means that the admissible setA is presented as an intersection

A =
⋂
ϕ∈Φ

Aϕ withAϕ
= {x : ϕ(x) ≥ 0} = ϕ−1([0,∞)) (4)
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and we would like to determine N(x̄;A) in terms of the functions ϕ ∈ Φ . When this is a finite intersection (Φ =
{ϕ1, . . . , ϕK }), one has, under quite mild conditions, an ‘intersection rule’

N

(
x̄;
⋂
ϕ∈Φ

Aϕ

)
=

∑
ϕ∈Φ

N(x̄;Aϕ) (5)

as a special case of [2, Cor. 3.5]. In general, however, no such results are available for infinite intersections. [We do note that
(5) is somewhat analogous to differentiating a sum, so working with an infinite intersectionmight be compared to term-by-
term differentiation of a series; one expects this to be possible, but under more restrictive hypotheses and perhaps with a
modified statement. Certainly we would expect this shift to involve some new ideas — e.g., there is an interchange of limits
in the background so we might expect to require some uniformity condition. Even under hypotheses ensuring its validity
for each finite subset ofΦ , it is clear that the formula (5) will generally be false, as stated, for infiniteΦ .]

Example 1.1. We might consider (4) in a restricted but typical setting: for example A might be the set of non-negative
functions in, for example,X = C(Ω). This is, indeed, of the form (4) we are considering, here with Φ the set of evaluation
functionalsΦ = {[x(·) 7→ x(s)] : s ∈ Ω}, noting that this is rather special in thatA is here a closed convex cone inX.

Somewhat more generally, we might consider an arbitrary closed convex set in a Banach spaceX and note that this is
describable as the intersection of all the half-spaces containing it:

A =
⋂
α∈I

Aα Aα = {x : 〈ξα, x〉 ≥ ρα} (6)

which is of the form (4) with ϕ ∈ Φ of the form ϕ(x) = 〈ξ, x〉−ρ. Given x̄ at the boundary ofA, the active set of constraints
is given byΦ∗ = {ϕ ∈ Φ : 〈ξ, x̄〉 = ρ} so the set of support functionals at x̄ is {−ξ : ϕ ∈ Φ∗}. Since N(x̄;Aα) = {0} for the
inactive constraints α ∈ I \ I∗, we have

N(x̄;A) = co {N(x̄;Aα) : α ∈ I} (7)
where ‘‘co S’’ denotes the conical hull of S, i.e., the closure of the convex hull of {aξ : a > 0, ξ ∈ S}, so (7) is the natural in-
terpretation of (5). This characterization depends on our having used the complete set of support functionals in specifyingA.

Example 1.2. As another simple example, take X = R, x̄ = 0, and let ϕk(x) = x + 1/k. This gives 0 = x̄ in the interior
of each Aϕk = [−1/k,∞) so no given constraint would be active. Here, each N(0;Aϕk) = {0}, while A = [0,∞) so
N(0;A) = (−∞, 0] 6= {0}.

Example 1.3. A slightly different example takesA to be the unit disk centered at the origin of R2 which we present as the
infinite intersection of the countable set of half-spacesAϕ given by

ϕ±k(x) = 1−
(
rk, ±

√
1− r2k

)
· x

where (rk) is an enumeration of the rationals in [−1, 1]. If we then take x̄ =
(
1/
√
2, 1/
√
2
)
, none of these constraints are

active since x̄ is in the interior of each of the presenting half-spacesAϕk above and the support functionals (a, a) exactly at
x̄ do not appear in the specifying {ϕk}. Nevertheless, the normal cone N(x̄;A) = {(−a,−a) : a ≥ 0} is expressible in terms
of these through the neighboring support functionals (ϕk(x̄) ≈ 0):

N(x̄;A) = −
⋂
ω>0

co {ϕ′(x̄) : ϕk(x̄) < ω} (8)

noting that ϕk(x̄) ≤ ω gives aϕ′k in a wedge centered at (a, a) of angular width diminishing to 0 as ω→ 0.

Example 1.4. Again withX = R2, x̄ = (0, 0), one might consider a quite different variant taking ϕk(x, y) = {x if y ≥ 0; x−
ky2 if y ≤ 0}. Here each constraint is active at x̄ and each N(x̄;Aϕk) = {(−r, 0) : r ≥ 0}. However,A = {(x, y) : x, y ≥ 0}
with N(x̄;A) = {(r, s) : r, s ≤ 0} and this is not contained in the hull of {N(x̄;Aϕk) : k = 1, 2, . . .}.

It is clear from Example 1.3 that the active constraints taken from a set of specifying constraints need not be sufficient
and we must also consider ‘almost active’ constraints, for which ϕ(x̄)/‖ξ‖ is small although not exactly 0. We thus have a
simultaneous concern for two questions:
1. The defining functionals are nonlinear, although moderately smooth, so the setA need not be convex — and, of course,
there may be infinitely many such defining constraint functionals.

2. We are concerned that the set of ‘presenting functionals’ definingAmay not be complete: the active constraints (support
functionals at x̄) might not appear at all.

Our goal here is to obtain a more general (nonconvex) version of the convex case (7), replacing the affine functionals
ψ = ψρ,ξ appearing there by an infinite set Φ of nonlinear Fréchet differentiable functionals ϕ : X→ R giving (4) while
taking account of ‘almost active’ constraints in formulating the result. [We also note in this a need for some uniformity
condition to rule out consideration of Example 1.4.]
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