Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/na)

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Normal cones to infinite intersections

Thomas I. Seidman[∗](#page-0-0)

Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, MD 21250, USA

a r t i c l e i n f o

a b s t r a c t

intersections.

Article history: Received 20 August 2009 Accepted 12 January 2010

Keywords: Nonsmooth analysis Normal cone Intersection rule

1. Introduction

A fundamental concern in variational analysis is the characterization through first-order optimality conditions of the solution of a constrained minimization problem

For sets given as finite intersections $A = \bigcap_{k=1}^{K} A_k$ the basic normal cone $N(\bar{x}; A)$ is given as $\sum_{k} N(\bar{x}; A_k)$, but such a result is not, in general, available for infinite intersections. A comparable characterization of $N(\bar{x}; A)$ is obtained here for a class of such infinite

Minimize: $f(x)$ subject to: $x \in A$. (1)

Under quite general conditions the first-order conditions on a local minimizer \bar{x} are known [\[1,](#page--1-0) Prop. 5.1] to take the form

$$
- \left[\nabla f \right] (\bar{x}) \in \hat{N}_0(\bar{x}; A) \subset N(\bar{x}; A)
$$
\n⁽²⁾

where $N(\bar{x}; A)$ denotes the basic normal cone at \bar{x} ([\[2\]](#page--1-1); see [Definitions 2.1](#page--1-2) and [2.2\)](#page--1-3) to the admissible set A. Thus we are led to the task of computing $N(\bar{x}; A)$ from the specification provided for A.

Constraints in large-scale problems are often generated by replicating a limited number of constraint prototypes over large index sets. In particular, we may consider, as prototype, constraints of the form $\varphi > 0$ for a scalar function φ , noting that the constraints in problem [\(1\)](#page-0-1) are often given in the form of a family of such inequalities

Minimize:
$$
f(x)
$$
 subject to: $\varphi(x) \ge 0$ for $\varphi \in \Phi$ (3)

where Φ is a set of constraint functions $\varphi : \mathcal{X} \to \mathbb{R}$. [While this set of inequalities could be subsumed by a single inequality $\varphi_*(x) \ge 0$ on taking $\varphi_*(x) = \inf{\{\varphi(x) : \varphi \in \Phi\}}$: this does not seem helpful. Indeed, we would have $-\text{epi}\varphi_* =$ $\bigcap_{\varphi \in \Phi} \{-epi(\varphi)\}\$ so the present consideration of infinite intersections seems as likely to help with differentiation of sup or inf as the reverse situation. We also note that [\(3\)](#page-0-2) is frequently seen with the inequality reversed, simply corresponding to the replacement $\varphi \leftarrow -\varphi$.]

Note that (3) means that the admissible set A is presented as an intersection

$$
\mathcal{A} = \bigcap_{\varphi \in \Phi} \mathcal{A}^{\varphi} \quad \text{with } \mathcal{A}^{\varphi} = \{x : \varphi(x) \ge 0\} = \varphi^{-1}([0, \infty)) \tag{4}
$$

© 2010 Elsevier Ltd. All rights reserved.

$$
\overline{a}
$$

[∗] Tel.: +1 410 455 2438; fax: +1 410 455 1066. *E-mail address:* [seidman@math.umbc.edu.](mailto:seidman@math.umbc.edu)

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter © 2010 Elsevier Ltd. All rights reserved. [doi:10.1016/j.na.2010.01.008](http://dx.doi.org/10.1016/j.na.2010.01.008)

and we would like to determine $N(\bar{x}; A)$ in terms of the functions $\varphi \in \Phi$. When this is a finite intersection ($\Phi =$ $\{\varphi_1, \ldots, \varphi_K\}$, one has, under quite mild conditions, an 'intersection rule'

$$
N\left(\bar{x};\bigcap_{\varphi\in\Phi}\mathcal{A}^{\varphi}\right)=\sum_{\varphi\in\Phi}N(\bar{x};\mathcal{A}^{\varphi})
$$
\n(5)

as a special case of [\[2,](#page--1-1) Cor. 3.5]. In general, however, no such results are available for infinite intersections. [We do note that [\(5\)](#page-1-0) is somewhat analogous to differentiating a sum, so working with an infinite intersection might be compared to term-byterm differentiation of a series; one expects this to be possible, but under more restrictive hypotheses and perhaps with a modified statement. Certainly we would expect this shift to involve some new ideas — e.g., there is an interchange of limits in the background so we might expect to require some uniformity condition. Even under hypotheses ensuring its validity for each finite subset of Φ , it is clear that the formula [\(5\)](#page-1-0) will generally be false, as stated, for infinite Φ .]

Example 1.1. We might consider [\(4\)](#page-0-3) in a restricted but typical setting: for example A might be the set of non-negative functions in, for example, $\mathcal{X} = C(\Omega)$. This is, indeed, of the form [\(4\)](#page-0-3) we are considering, here with Φ the set of evaluation functionals $\Phi = \{ [x(\cdot) \mapsto x(s)] : s \in \Omega \}$, noting that this is rather special in that A is here a closed convex cone in X.

Somewhat more generally, we might consider an arbitrary closed convex set in a Banach space X and note that this is describable as the intersection of all the half-spaces containing it:

$$
\mathcal{A} = \bigcap_{\alpha \in I} \mathcal{A}_{\alpha} \qquad \mathcal{A}_{\alpha} = \{x : \langle \xi_{\alpha}, x \rangle \ge \rho_{\alpha} \} \tag{6}
$$

which is of the form [\(4\)](#page-0-3) with $\varphi \in \Phi$ of the form $\varphi(x) = \langle \xi, x \rangle - \rho$. Given \bar{x} at the boundary of A, the *active set* of constraints is given by $\Phi_* = {\varphi \in \Phi : \langle \xi, \bar{x} \rangle = \rho}$ so the set of support functionals at \bar{x} is $\{-\xi : \varphi \in \Phi_*\}$. Since $N(\bar{x}; A_{\alpha}) = \{0\}$ for the inactive constraints $\alpha \in \mathcal{I} \setminus \mathcal{I}_*$, we have

$$
N(\bar{x}; \mathcal{A}) = \overline{\text{co}} \{ N(\bar{x}; \mathcal{A}_{\alpha}) : \alpha \in \mathcal{I} \}
$$
\n⁽⁷⁾

where " \overline{co} s" denotes the conical hull of s, i.e., the closure of the convex hull of $\{a\xi : a > 0, \xi \in \mathcal{S}\}\)$, so [\(7\)](#page-1-1) is the natural interpretation of [\(5\).](#page-1-0) This characterization depends on our having used the complete set of support functionals in specifying A.

Example 1.2. As another simple example, take $\mathcal{X} = \mathbb{R}, \bar{x} = 0$, and let $\varphi_k(\mathcal{X}) = x + \frac{1}{k}$. This gives $0 = \bar{x}$ in the interior of each $A^{\varphi_k} = [-1/k, \infty)$ so no given constraint would be active. Here, each $N(0; A^{\varphi_k}) = \{0\}$, while $A = [0, \infty)$ so $N(0; \mathcal{A}) = (-\infty, 0] \neq \{0\}.$

Example 1.3. A slightly different example takes A to be the unit disk centered at the origin of \mathbb{R}^2 which we present as the infinite intersection of the countable set of half-spaces \mathcal{A}^{φ} given by

$$
\varphi_{\pm k}(x) = 1 - \left(r_k, \ \pm \sqrt{1 - r_k^2}\,\right) \cdot x
$$

where (r_k) is an enumeration of the rationals in [-1 , 1]. If we then take $\bar{x} = \left(1 / \frac{1}{\sqrt{2\pi}} \right)$ √ 2, 1/ √ $\overline{2}),$ none of these constraints are active since \bar{x} is in the interior of each of the presenting half-spaces A^{φ_k} above and the support functionals (*a*, *a*) exactly at *x*^{\bar{x}} do not appear in the specifying { φ_k }. Nevertheless, the normal cone *N*(\bar{x} ; *A*) = {(−*a*, −*a*) : *a* ≥ 0} is expressible in terms of these through the neighboring support functionals ($\varphi_k(\bar{x}) \approx 0$):

$$
N(\bar{x}; \mathcal{A}) = -\bigcap_{\omega > 0} \overline{\text{co}} \{ \varphi'(\bar{x}) : \varphi_k(\bar{x}) < \omega \}
$$
 (8)

noting that $\varphi_k(\bar{x}) \le \omega$ gives $a\varphi'_k$ in a wedge centered at (a, a) of angular width diminishing to 0 as $\omega \to 0$.

Example 1.4. Again with $X = \mathbb{R}^2$, $\bar{x} = (0, 0)$, one might consider a quite different variant taking $\varphi_k(x, y) = \{x \text{ if } y \ge 0; x - y\}$ ky^2 if $y \le 0$ }. Here each constraint is active at \bar{x} and each $N(\bar{x}; A^{\varphi_k}) = \{(-r, 0) : r \ge 0\}$. However, $A = \{(x, y) : x, y \ge 0\}$ with $N(\bar{x}; A) = \{(r, s) : r, s \le 0\}$ and this is not contained in the hull of $\{N(\bar{x}; A^{\varphi_k}) : k = 1, 2, \ldots\}$.

It is clear from [Example 1.3](#page-1-2) that the active constraints taken from a set of specifying constraints need not be sufficient and we must also consider 'almost active' constraints, for which $\varphi(\bar{x})/||\xi||$ is small although not exactly 0. We thus have a simultaneous concern for two questions:

- 1. The defining functionals are nonlinear, although moderately smooth, so the set A need not be convex $-$ and, of course, there may be infinitely many such defining constraint functionals.
- 2. We are concerned that the set of 'presenting functionals' defining A may not be complete: the active constraints (support functionals at \bar{x}) might not appear at all.

Our goal here is to obtain a more general (nonconvex) version of the convex case [\(7\),](#page-1-1) replacing the affine functionals $\psi=\psi^{\rho,\xi}$ appearing there by an infinite set Φ of nonlinear Fréchet differentiable functionals $\varphi:\mathfrak X\to\mathbb R$ giving [\(4\)](#page-0-3) while taking account of 'almost active' constraints in formulating the result. [We also note in this a need for some uniformity condition to rule out consideration of [Example 1.4.](#page-1-3)]

Download English Version:

<https://daneshyari.com/en/article/841709>

Download Persian Version:

<https://daneshyari.com/article/841709>

[Daneshyari.com](https://daneshyari.com/)