

Contents lists available at ScienceDirect

Nonlinear Analysis

Local $C^1(\overline{\Omega})$ -minimizers versus local $W^{1,p}(\Omega)$ -minimizers of nonsmooth functionals

Patrick Winkert

Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany

ARTICLE INFO

Article history: Received 17 December 2009 Accepted 3 February 2010

MSC: 34A60 35R70

49J52 49J53

Keywords: Clarke's generalized gradient Local minimizers

Nonsmooth functionals p-Laplacian

ABSTRACT

We study not necessarily differentiable functionals of the form

$$J(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p dx + \frac{1}{p} \int_{\Omega} |u|^p dx + \int_{\Omega} j_1(x, u) dx + \int_{\partial \Omega} j_2(x, \gamma u) d\sigma$$

with $1 involving locally Lipschitz functions <math>j_1 : \Omega \times \mathbb{R} \to \mathbb{R}$ as well as $j_2 : \partial \Omega \times \mathbb{R} \to \mathbb{R}$. We prove that local $C^1(\overline{\Omega})$ -minimizers of J must be local $W^{1,p}(\Omega)$ -minimizers of J.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the functional $J: W^{1,p}(\Omega) \to \mathbb{R}$ defined by

$$J(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p dx + \frac{1}{p} \int_{\Omega} |u|^p dx + \int_{\Omega} j_1(x, u) dx + \int_{\partial \Omega} j_2(x, \gamma u) d\sigma$$

$$\tag{1.1}$$

with $1 . The domain <math>\Omega \subset \mathbb{R}^N$ is supposed to be bounded with Lipschitz boundary $\partial \Omega$ and the nonlinearities $j_1 : \Omega \times \mathbb{R} \to \mathbb{R}$ as well as $j_2 : \partial \Omega \times \mathbb{R} \to \mathbb{R}$ are measurable in the first argument and locally Lipschitz in the second one. By $\gamma : W^{1,p}(\Omega) \to L^{q_1}(\partial \Omega)$ for $1 < q_1 < p_* (p_* = (N-1)p/(N-p))$ if p < N and $p_* = +\infty$ if $p \ge N$), we denote the trace operator which is known to be linear, bounded and even compact. Note that $J : W^{1,p}(\Omega) \to \mathbb{R}$ does not have to be differentiable and that it corresponds to the following elliptic inclusion

$$-\Delta_p u + |u|^{p-2} u + \partial j_1(x, u) \ni 0 \quad \text{in } \Omega,$$

$$\frac{\partial u}{\partial v} + \partial j_2(x, \gamma u) \ni 0 \quad \text{on } \partial \Omega,$$

where $-\Delta_p u = -\operatorname{div}(|\nabla u|^{p-2}\nabla u)$, 1 , is the negative*p* $-Laplacian. The symbol <math>\frac{\partial u}{\partial \nu}$ denotes the outward pointing conormal derivative associated with $-\Delta_p$ and $\partial j_k(x,u)$, k=1,2, stands for Clarke's generalized gradient given by

$$\partial j_k(x,s) = \{ \xi \in \mathbb{R} : j_k^0(x,s;r) \ge \xi r, \forall r \in \mathbb{R} \}.$$

The term $j_{\nu}^{0}(x,s;r)$ denotes the generalized directional derivative of the locally Lipschitz function $s \mapsto j_{k}(x,s)$ at s in the direction r defined by

$$j_k^0(x, s; r) = \limsup_{y \to s, t \downarrow 0} \frac{j_k(x, y + tr) - j_k(x, y)}{t},$$

(cf. [1, Chapter 2]). It is clear that $j_k^0(x, s; r) \in \mathbb{R}$ because $j_k(x, \cdot)$ is locally Lipschitz.

The main goal of this paper is the comparison of local $C^1(\overline{\Omega})$ and local $W^{1,p}(\Omega)$ -minimizers. That means that if $u_0 \in$ $W^{1,p}(\Omega)$ is a local $C^1(\overline{\Omega})$ -minimizer of J, then u_0 is also a local $W^{1,p}(\Omega)$ -minimizer of J. This result is stated in our main Theorem 3.1.

Such a result was first proven for functionals corresponding to elliptic equations with Dirichlet boundary values by Brezis and Nirenberg in [2] if p = 2. They consider potentials of the form

$$\Phi(u) = \int_{\Omega} \frac{1}{2} |\nabla u|^2 - \int_{\Omega} F(x, u),$$

where $F(x,u)=\int_0^u f(x,s) ds$ with some Carathéodory function $f:\Omega\times\mathbb{R}\to\mathbb{R}$. An extension to the more general case $1< p<\infty$ can be found in the paper of García Azorero et al. in [3]. We also refer the reader to [4] if p>2. As regards nonsmooth functionals defined on $W_0^{1,p}(\Omega)$ with $2 \le p < \infty$, we point to the paper [5]. A very inspiring paper about local minimizers of potentials associated with nonlinear parametric Neumann problems was published by Motreanu et al. in [6]. Therein, the authors study the functional

$$\phi_0(x) = \frac{1}{p} \|Dx\|_p^p - \int_Z F_0(z, x(z)) dz, \quad \forall x \in W_n^{1,p}(\Omega)$$

with

$$W_n^{1,p}(\varOmega) = \left\{ y \in W^{1,p}(\varOmega) : \frac{\partial x}{\partial n} = 0 \right\},$$

where $\frac{\partial x}{\partial n}$ is the outer normal derivative of u and $F_0(z,x) = \int_0^x f_0(z,s) ds$, as well as 1 . A similar result corresponding to nonsmooth functionals defined on $W_n^{1,p}(\Omega)$ for the case $2 \le p < \infty$ was proved in [7]. We also refer the reader to the paper in [8] for 1 .

A recent paper about the relationship between local $C^1(\overline{\Omega})$ -minimizers and local $W^{1,p}(\Omega)$ -minimizers of C^1 -functionals has been treated by the author in [9]. The idea of the present paper was the generalization to the more general case of nonsmooth functionals defined on $W^{1,p}(\Omega)$ with 1 involving boundary integrals which in general do not vanish.

2. Hypotheses

We suppose the following conditions on the nonsmooth potentials $j_1: \Omega \times \mathbb{R} \to \mathbb{R}$ and $j_2: \partial \Omega \times \mathbb{R} \to \mathbb{R}$.

- (H1) (i) $x \mapsto j_1(x, s)$ is measurable in Ω for all $s \in \mathbb{R}$.
 - (ii) $s \mapsto j_1(x, s)$ is locally Lipschitz in \mathbb{R} for almost all $x \in \Omega$.
 - (iii) There exists a constant $c_1 > 0$ such that for almost all $x \in \Omega$ and for all $\xi_1 \in \partial j_1(x, s)$ it holds that

$$|\xi_1| \le c_1(1+|s|^{q_0-1}) \tag{2.1}$$

with
$$1 < q_0 < p^*$$
, where p^* is the Sobolev critical exponent
$$p^* = \begin{cases} \frac{Np}{N-p} & \text{if } p < N, \\ +\infty & \text{if } p \ge N. \end{cases}$$

- (H2) (i) $x \mapsto j_2(x, s)$ is measurable in $\partial \Omega$ for all $s \in \mathbb{R}$.
 - (ii) $s \mapsto j_2(x, s)$ is locally Lipschitz in \mathbb{R} for almost all $x \in \partial \Omega$.
 - (iii) There exists a constant $c_2 > 0$ such that for almost all $x \in \partial \Omega$ and for all $\xi_2 \in \partial j_2(x, s)$ it holds that

$$|\xi_{2}| \leq c_{2}(1+|s|^{q_{1}-1})$$
with $1 < q_{1} < p_{*}$, where p_{*} is given by
$$p_{*} = \begin{cases} \frac{(N-1)p}{N-p} & \text{if } p < N, \\ +\infty & \text{if } p \geq N. \end{cases}$$
(2.2)

(iv) Let $u \in W^{1,p}(\Omega)$. Then every $\xi_3 \in \partial j_2(x,u)$ satisfies the condition $|\xi_3(x_1) - \xi_3(x_2)| \le L|x_1 - x_2|^{\alpha},$ for all x_1, x_2 in $\partial \Omega$ with $\alpha \in (0, 1]$.

Remark 2.1. Note that the conditions above imply that the functional $J:W^{1,p}(\Omega)\to\mathbb{R}$ is locally Lipschitz (see [10] or [11, p. 313]). That guarantees, in particular, that Clarke's generalized gradient $s \mapsto \partial I(s)$ exists.

Download English Version:

https://daneshyari.com/en/article/841745

Download Persian Version:

https://daneshyari.com/article/841745

Daneshyari.com