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a b s t r a c t

We employ the generalized Sundman transformation method to obtain certain new first
integrals of autonomous second-order ordinary differential equations belonging to the
Painlevé–Gambier classification scheme. This method not only yields systematically the
known first integrals of a large number of the Painlevé–Gambier equations but also some
time dependent ones, which greatly simplify the computation of their corresponding
solution. In addition we also compute the Sundman symmetries of these equations.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of constructing solutions of a given differential equation forms the cornerstone of their analysis. Not
unrelated to this problem is the issue of determining first integrals of the differential equation under consideration. This
is because the existence of a sufficient number of first integrals often enables us to construct a solution by mere elimination
of the derivatives of the dependent variable.
Although there are a number ofwell-definedmethods for the solution of linear ordinary differential equations (ODEs) the

same, however, cannot be said for nonlinear ODEs. It was only through the efforts of Lie towards the end of the nineteenth
century that many ad hoc methods for the solution of nonlinear ODEs were gradually systemized. Besides it is generally
acknowledged that, whenever a differential equation is amenable to a solution, it is because of some sort of underlying
symmetry of the equation [1,2]. Much of Lie’s work was concerned with point transformations of the form

(t, x) 7→ (T , X) where T = G(t, x), X = F(t, x)

with the transformation often involving one or more continuous real parameters.
Furthermore towards the very end of the nineteenth century the fact that a given differential equation could be

transformed to a linear equation, that is, it could be linearized came to light [3]. This provided a mechanism to work out
the solutions of many nonlinear differential equations by systematically transforming them to linear equations. In fact Lie
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himself [4] solved the linearization problem for second-order ordinary differential equations in the sense that he found
the general form of all second-order ODEs that could be reduced to a linear equation by changing the independent and
dependent variables [4].
Subsequently attempts were made to look beyond point transformations when dealing with second and higher-order

ODEs, with some degree of success. For instance, one may look for nonlocal transformations under which a given ordinary
differential equation is linearizable. This problemwas studied by Duarté et al. [5] and considers transformations of the form

X(T ) = F(t, x), dT = G(t, x)dt. (1.1)

Here F and G are arbitrary smooth functions and it is assumed that the Jacobian J ≡ ∂(T ,X)
∂(t,x) 6= 0. If one knows the functional

form of x(t), then the latter transformation ceases to be nonlocal, but knowledge of x(t) is what we are interested in, in
the first place. Consequently (1.1) constitutes a particular type of nonlocal transformation. It must be pointed out that term
nonlocal is very general in nature and it is therefore better to refer to such a transformation as a generalized Sundman
transformation (GST) [6–8], in view of its similarity with the original transformation used in Sundman’s analysis [9]. Other
authors have also used such transformations, but have preferred to call them non point transformations [10,11].
In [5] the authors derived the most general condition under which a second-order ordinary differential equation is

transformable to the linear equation

X ′′(T ) = 0,

(here X ′ = dX
dT ) under a generalized Sundman transformation. Euler and Euler, studied the case of the general anharmonic

oscillator in [7], wherein they investigated the Sundman symmetries of second-order and third-order nonlinear ODEs.
These symmetries, which are in general nonlocal transformations can be calculated systematically and can be used to find
first integrals of the equations. Euler et al. used the generalized Sundman transformation to obtain a relation between a
generalized Emden–Fowler equation and the first Painlevé transcendent [6].

1.1. Result and plan

In this paper we concentrate on generalized Sundman transformations and Sundman symmetries of second-order
ordinary differential equations of the Painlevé–Gambier classification [12,13,18]. We compute new first integrals of some of
the autonomous Painlevé–Gambier equations, which are not mentioned in the classic text by Ince [14]. Themethod used for
this purpose is the generalized Sundman transformation. Barring the six Painlevé equations, it is known that, the remaining
44 equations of this classification scheme admit solutions in terms of known special functions. Therefore knowledge of
additional (time dependent) first integrals is not essential, as far as construction of their solutions is concerned. But the
deduction of time dependent first integrals is interesting from a broader perspective because of the recent interest in non
autonomous ODEs. Secondly, we also compute the associated Sundman symmetries of these equations. It is true that the
first integrals of the Painlevé–Gambier (PG) equations are known from other methods. In this paper we demonstrate that
the first integrals of PG equations can be computed in a simple manner using Sundman’s method. As a bonus we obtain the
Sundman symmetries of these class of equations which are not stated elsewhere.
The organization of the paper is as follows. In Section 2 we introduce the notion of a generalized Sundman

transformation and define the associated Sundman symmetry. Section 3 begins with a discussion of the generalized
Sundman transformation for the Jacobi equation and proceeds to outline the format for its explicit evaluation. It then
examines, as a special case of the Jacobi equation, particular equations of the Painlevé–Gambier classification, notably the
equations numbered 11, 17, 37, 41 and 43 of Ince’s book, from the viewpoints of the generalized Sundman transformation,
the associated Sundman symmetry including also their solution. In Section 4, four more equations of the Painlevé–Gambier
classification (namely the equations numbered 18, 19, 21 and 22) which also arise as special cases of the Jacobi equation are
analyzed and their parametric solutions are constructed by exploiting the Sundman transformation.

2. Generalized Sundman transformation and symmetry

Consider an nth-order ordinary differential equation given by

x(n) = w(t, x, ẋ, ẍ, . . . , x(n−1)) (2.1)

where x = x(t) and x(k) = dkx/dtk. Such an ODE may always be written as a system of first-order ODEs

ẋi = wi(x) i = 1, . . . , n.

By a first integral we mean the following.

Definition 2.1. Let I(x, t) be a C1 function on an open set U ∈ Rn. Then I(x, t) is a first integral of the vector field w · ∂x
corresponding to the system of ODEs ẋ = w(x) if and only if it is constant along any solution of the equation.

Thismeans that given a time interval T , I(x(t), t) is independent of t for all t ∈ T . Formallywe define a generalized Sundman
transformation for (2.1) as follows.
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