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a b s t r a c t

In the present paper, a pair of Wolfe type nondifferentiable multiobjective second-order
symmetric dual programs over arbitrary cones are formulated. Using the concept of weak
efficiency with respect to a convex cone, weak, strong and converse duality theorems are
studied under second-order K–F-convexity assumptions. Self-duality is also discussed.
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1. Introduction

The duality in linear programming is symmetric, i.e., the dual of the dual is the primal problem. This is not the case
in nonlinear programming in general. Dorn [1] introduced the concept of symmetric duality in quadratic programming.
His results were extended to general nonlinear programs involving convex/concave functions by Dantzig et al. [2] and
then by Bazaraa and Goode [3] over cone constraints. Chandra et al. [4] studied symmetric duality in mathematical
programming under F-convexity/F-pseudoconvexity for Wolfe and Mond–Weir type models. Kim et al. [5] constructed
a pair of multiobjective symmetric dual programs for pseudo-invex functions over arbitrary cones and obtained various
duality results.Multiobjective symmetric dual programsover cones inwhich the objective function is optimizedwith respect
to a cone have been discussed in [6–9]. Recently, Kim and Lee [10] studied nondifferentiable higher-order multiobjective
dual programs involving cone constraints and established duality results under higher-order generalized convexity
assumptions.

Mangasarian [11] introduced the concept of second-order duality in nonlinear programming.He indicated that it provides
tighter bounds for the value of objective functions. This motivated several researchers in this field. Second-order symmetric
duality involving nondifferentiable functions has been discussed by Hou and Yang [12] for Mond–Weir type duals, and
by Ahmad and Husain [13] and Yang et al. [14] for Wolfe type duals. Yang et al. [15], and Gupta and Kailey [16] studied
multiobjective second-order symmetric duality under F-convexity.

In this paper, we have formulated Wolfe type nondifferentiable second-order multiobjective symmetric dual programs
over arbitrary cones. Using the concept of weak efficiency with respect to a convex cone, weak, strong and converse duality
theorems have been established under second-order K–F-convexity assumptions. Some of the known results are obtained
as special cases. Self-duality for our programs has also been discussed.
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2. Notation and preliminaries

We consider the following multiobjective programming problem:

K -minimize φ(x) (P)
subject to −g(x) ∈ Q , x ∈ S,

where S ⊆ Rn, φ : Rn
→ Rk, g : Rn

→ Rm, and K and Q are closed convex pointed cones with non-empty interior in Rk and
Rm, respectively. Let X = {x ∈ S : −g(x) ∈ Q } be the set of all feasible solutions of (P). Further, let K0 denote the set K \ {0}.
All the vectors will be considered as column vectors.

Definition 2.1. A point x̄ ∈ X is said to be an efficient (a weakly efficient) solution of (P) if there exists no x ∈ X such that
φ(x̄) − φ(x) ∈ K0 (int K).

Let C1 and C2 be closed convex cones in Rn and Rm, respectively. Also, let S1 ⊆ Rn and S2 ⊆ Rm be open sets such that
C1 × C2 ⊂ S1 × S2.

Definition 2.2. The positive polar cone C∗

i of Ci (i = 1, 2) is defined as C⋆
i = {z : xT z = 0, for all x ∈ Ci}.

Definition 2.3. A functional F : S1 × S1 × Rn
−→ R is said to be sublinear in the third variable if for all x, u ∈ S1,

(i) F(x, u; a1 + a2) 5 F(x, u; a1) + F(x, u; a2) for all a1, a2 ∈ Rn, and
(ii) F(x, u; αa) = αF(x, u; a) for all α ∈ R+ and a ∈ Rn.

For notational convenience, we will write F(x,u)(a) for F(x, u; a).

Definition 2.4 ([17]). A twice-differentiable function f : S1 × S2 → Rk is said to be second-order K–F-convex in the
first variable at u ∈ S1 for fixed v ∈ S2 if there exists a sublinear functional F : S1 × S1 × Rn

−→ R such that for
x ∈ S1, qi ∈ Rn, i = {1, 2, . . . , k},

f1(x, v) − f1(u, v) +
1
2
q1T∇xxf1(u, v)q1 − F(x,u)[∇xf1(u, v) + ∇xxf1(u, v)q1], . . . , fk(x, v) − fk(u, v)

+
1
2
qkT∇xxfk(u, v)qk − F(x,u)[∇xfk(u, v) + ∇xxfk(u, v)qk]


∈ K ,

and f (x, y) is said to be second-order K–G-concave in the second variable at v ∈ S2 for fixed u ∈ S1 if there exists a sublinear
functional G : S2 × S2 × Rm

−→ R such that for y ∈ S2, pi ∈ Rm, i = {1, 2, . . . , k},
−f1(u, y) + f1(u, v) −

1
2
pT1∇yyf1(u, v)p1 + G(y,v)[∇yf1(u, v) + ∇yyf1(u, v)p1], . . . ,−fk(u, y) + fk(u, v)

−
1
2
pTk∇yyfk(u, v)pk + G(y,v)[∇yfk(u, v) + ∇yyfk(u, v)pk]


∈ K .

Lemma 2.1 (Generalized Schwarz Inequality). Let A ∈ Rn
× Rn be a positive semi-definite matrix. Then for all x, y ∈ Rn,

xTAy 5 (xTAx)
1
2 (yTAy)

1
2 .

Equality holds if Ax = λAy for some λ = 0.

Now we consider the following pair of Wolfe type nondifferentiable multiobjective programming problems. It may be
noted that since K is a pointed cone, int K ∗ is non-empty.
Primal problem (WP):

K -minimize H(x, y, λ, p) = f (x, y) + (xTDx)
1
2 ek − yT∇y(λ

T f )(x, y)ek

− yT (∇yy(λ
T f )(x, y)p)ek −

1
2
pT (∇yy(λ

T f )(x, y)p)ek,

subject to

−∇y(λ
T f )(x, y) + Ew − ∇yy(λ

T f )(x, y)p ∈ C∗

2 , (1)

wTEw 5 1, (2)

λT ek = 1, (3)

w ∈ Rm, λ ∈ int K ∗, x ∈ C1. (4)
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