# Nondifferentiable multiobjective symmetric duality with $F$-convexity over cones 

Himani Saini*, T.R. Gulati<br>Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee-247667, India

## ARTICLE INFO

## Article history:

Received 23 February 2010
Accepted 18 October 2010

## Keywords:

Nondifferentiable multiobjective programming Symmetric duality
Second-order $K-F$-convexity
Cone constraints
Weakly efficient solution
Duality theorems


#### Abstract

In the present paper, a pair of Wolfe type nondifferentiable multiobjective second-order symmetric dual programs over arbitrary cones are formulated. Using the concept of weak efficiency with respect to a convex cone, weak, strong and converse duality theorems are studied under second-order $K-F$-convexity assumptions. Self-duality is also discussed.


© 2010 Elsevier Ltd. All rights reserved.

## 1. Introduction

The duality in linear programming is symmetric, i.e., the dual of the dual is the primal problem. This is not the case in nonlinear programming in general. Dorn [1] introduced the concept of symmetric duality in quadratic programming. His results were extended to general nonlinear programs involving convex/concave functions by Dantzig et al. [2] and then by Bazaraa and Goode [3] over cone constraints. Chandra et al. [4] studied symmetric duality in mathematical programming under $F$-convexity/F-pseudoconvexity for Wolfe and Mond-Weir type models. Kim et al. [5] constructed a pair of multiobjective symmetric dual programs for pseudo-invex functions over arbitrary cones and obtained various duality results. Multiobjective symmetric dual programs over cones in which the objective function is optimized with respect to a cone have been discussed in [6-9]. Recently, Kim and Lee [10] studied nondifferentiable higher-order multiobjective dual programs involving cone constraints and established duality results under higher-order generalized convexity assumptions.

Mangasarian [11] introduced the concept of second-order duality in nonlinear programming. He indicated that it provides tighter bounds for the value of objective functions. This motivated several researchers in this field. Second-order symmetric duality involving nondifferentiable functions has been discussed by Hou and Yang [12] for Mond-Weir type duals, and by Ahmad and Husain [13] and Yang et al. [14] for Wolfe type duals. Yang et al. [15], and Gupta and Kailey [16] studied multiobjective second-order symmetric duality under $F$-convexity.

In this paper, we have formulated Wolfe type nondifferentiable second-order multiobjective symmetric dual programs over arbitrary cones. Using the concept of weak efficiency with respect to a convex cone, weak, strong and converse duality theorems have been established under second-order $K-F$-convexity assumptions. Some of the known results are obtained as special cases. Self-duality for our programs has also been discussed.

[^0]
## 2. Notation and preliminaries

We consider the following multiobjective programming problem:
$K$-minimize $\phi(x)$
subject to $-g(x) \in Q, \quad x \in S$,
where $S \subseteq R^{n}, \phi: R^{n} \rightarrow R^{k}, g: R^{n} \rightarrow R^{m}$, and $K$ and $Q$ are closed convex pointed cones with non-empty interior in $R^{k}$ and $R^{m}$, respectively. Let $X=\{x \in S:-g(x) \in Q\}$ be the set of all feasible solutions of (P). Further, let $K_{0}$ denote the set $K \backslash\{0\}$. All the vectors will be considered as column vectors.

Definition 2.1. A point $\bar{x} \in X$ is said to be an efficient (a weakly efficient) solution of ( P ) if there exists no $x \in X$ such that $\phi(\bar{x})-\phi(x) \in K_{0}(\operatorname{int} K)$.
Let $C_{1}$ and $C_{2}$ be closed convex cones in $R^{n}$ and $R^{m}$, respectively. Also, let $S_{1} \subseteq R^{n}$ and $S_{2} \subseteq R^{m}$ be open sets such that $C_{1} \times C_{2} \subset S_{1} \times S_{2}$.

Definition 2.2. The positive polar cone $C_{i}^{*}$ of $C_{i}(i=1,2)$ is defined as $C_{i}^{\star}=\left\{z: x^{T} z \geqq 0\right.$, for all $\left.x \in C_{i}\right\}$.
Definition 2.3. A functional $F: S_{1} \times S_{1} \times R^{n} \longrightarrow R$ is said to be sublinear in the third variable if for all $x, u \in S_{1}$,
(i) $F\left(x, u ; a_{1}+a_{2}\right) \leqq F\left(x, u ; a_{1}\right)+F\left(x, u ; a_{2}\right)$ for all $a_{1}, a_{2} \in R^{n}$, and
(ii) $F(x, u ; \alpha a)=\alpha F(x, u ; a)$ for all $\alpha \in R_{+}$and $a \in R^{n}$.

For notational convenience, we will write $F_{(x, u)}(a)$ for $F(x, u ; a)$.
Definition 2.4 ([17]). A twice-differentiable function $f: S_{1} \times S_{2} \mapsto R^{k}$ is said to be second-order $K-F$-convex in the first variable at $u \in S_{1}$ for fixed $v \in S_{2}$ if there exists a sublinear functional $F: S_{1} \times S_{1} \times R^{n} \longrightarrow R$ such that for $x \in S_{1}, q_{i} \in R^{n}, i=\{1,2, \ldots, k\}$,

$$
\begin{aligned}
& \left(f_{1}(x, v)-f_{1}(u, v)+\frac{1}{2} q_{1}^{T} \nabla_{x x} f_{1}(u, v) q_{1}-F_{(x, u)}\left[\nabla_{\chi} f_{1}(u, v)+\nabla_{x x} f_{1}(u, v) q_{1}\right], \ldots, f_{k}(x, v)-f_{k}(u, v)\right. \\
& \left.\quad+\frac{1}{2} q_{k}{ }^{T} \nabla_{x x} f_{k}(u, v) q_{k}-F_{(x, u)}\left[\nabla_{\chi} f_{k}(u, v)+\nabla_{x x} f_{k}(u, v) q_{k}\right]\right) \in K,
\end{aligned}
$$

and $f(x, y)$ is said to be second-order $K-G$-concave in the second variable at $v \in S_{2}$ for fixed $u \in S_{1}$ if there exists a sublinear functional $G: S_{2} \times S_{2} \times R^{m} \longrightarrow R$ such that for $y \in S_{2}, p_{i} \in R^{m}, i=\{1,2, \ldots, k\}$,

$$
\begin{aligned}
& \left(-f_{1}(u, y)+f_{1}(u, v)-\frac{1}{2} p_{1}^{T} \nabla_{y y} f_{1}(u, v) p_{1}+G_{(y, v)}\left[\nabla_{y} f_{1}(u, v)+\nabla_{y y} f_{1}(u, v) p_{1}\right], \ldots,-f_{k}(u, y)+f_{k}(u, v)\right. \\
& \left.\quad-\frac{1}{2} p_{k}^{T} \nabla_{y y} f_{k}(u, v) p_{k}+G_{(y, v)}\left[\nabla_{y} f_{k}(u, v)+\nabla_{y y} f_{k}(u, v) p_{k}\right]\right) \in K .
\end{aligned}
$$

Lemma 2.1 (Generalized Schwarz Inequality). Let $A \in R^{n} \times R^{n}$ be a positive semi-definite matrix. Then for all $x, y \in R^{n}$,

$$
x^{T} A y \leqq\left(x^{T} A x\right)^{\frac{1}{2}}\left(y^{T} A y\right)^{\frac{1}{2}} .
$$

Equality holds if $A x=\lambda A y$ for some $\lambda \geqq 0$.
Now we consider the following pair of Wolfe type nondifferentiable multiobjective programming problems. It may be noted that since $K$ is a pointed cone, int $K^{*}$ is non-empty.
Primal problem (WP):

$$
\begin{aligned}
K \text {-minimize } H(x, y, \lambda, p)= & f(x, y)+\left(x^{T} D x\right)^{\frac{1}{2}} e_{k}-y^{T} \nabla_{y}\left(\lambda^{T} f\right)(x, y) e_{k} \\
& -y^{T}\left(\nabla_{y y}\left(\lambda^{T} f\right)(x, y) p\right) e_{k}-\frac{1}{2} p^{T}\left(\nabla_{y y}\left(\lambda^{T} f\right)(x, y) p\right) e_{k}
\end{aligned}
$$

subject to

$$
\begin{align*}
& -\nabla_{y}\left(\lambda^{T} f\right)(x, y)+E w-\nabla_{y y}\left(\lambda^{T} f\right)(x, y) p \in C_{2}^{*},  \tag{1}\\
& w^{T} E w \leqq 1  \tag{2}\\
& \lambda^{T} e_{k}=1,  \tag{3}\\
& w \in R^{m}, \quad \lambda \in \operatorname{int} K^{*}, \quad x \in C_{1} . \tag{4}
\end{align*}
$$

# https://daneshyari.com/en/article/841783 

Download Persian Version:

## https://daneshyari.com/article/841783

## Daneshyari.com


[^0]:    * Corresponding author. Tel.: +91 9037467984.

    E-mail addresses: himanisaini.iitr@gmail.com (H. Saini), trgmaiitr@rediffmail.com (T.R. Gulati).

