

Contents lists available at ScienceDirect

Nonlinear Analysis

Three periodic solutions for *p*-Hamiltonian systems*

Chun Li, Zeng-Qi Ou, Chun-Lei Tang*

School of Mathematics and Statistics, Southwest University, Chongging 400715, People's Republic of China

ARTICLE INFO

Article history: Received 10 May 2010 Accepted 18 October 2010

Keywords: p-Hamiltonian system Periodic solution Critical point

ABSTRACT

The existence of at least three periodic solutions is established for a class of *p*-Hamiltonian systems. Our technical approach is based on two general three critical points theorems obtained by Ricceri and Averna–Bonanno.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction and main results

Consider the existence of periodic solutions for the p-Hamiltonian systems

$$\begin{cases} -(|u'|^{p-2}u')' + A(t)|u|^{p-2}u = \lambda \nabla F(t, u) + \mu \nabla G(t, u), \\ u(T) - u(0) = u'(T) - u'(0) = 0, \end{cases}$$
(1)

where λ , $\mu \in [0, +\infty)$, p > 1, T > 0, $F : [0, T] \times R^N \to R$ is a function such that $F(\cdot, x)$ is continuous in [0, T] for all $x \in R^N$ and $F(t, \cdot)$ is a C^1 -function in R^N for almost every $t \in [0, T]$, and $G : [0, T] \times R^N \to R$ is measurable in [0, T] and C^1 in R^N . $A = (a_{ij}(t))_{N \times N}$ is symmetric, $A \in C([0, T], R^{N \times N})$, and there exists a positive constant $\underline{\lambda}$ such that $(A(t)|x|^{p-2}x, x) \geq \underline{\lambda}|x|^p$ for all $x \in R^N$ and $t \in [0, T]$, that is, A(t) is positive definite for all $t \in [0, T]$.

In the sequel, the Sobolev space $W_T^{1,p}$ is defined by

$$W_T^{1,p} = \left\{ u : [0,T] \to R^N \middle| \begin{array}{l} u \text{ is absolutely continuous,} \\ u(0) = u(T) \text{ and } u' \in L^p(0,T;R^N) \end{array} \right\},$$

and endowed with the norm

$$||u||_A = \left(\int_0^T |u'(t)|^p dt + \int_0^T (A(t)|u(t)|^{p-2}u(t), u(t)) dt\right)^{\frac{1}{p}}.$$

Observe that

$$(A(t)|x|^{p-2}x, x) = |x|^{p-2} \sum_{i,j=1}^{N} a_{ij}(t)x_{i}x_{j}$$

$$\leq |x|^{p-2} \sum_{i,j=1}^{N} |a_{ij}(t)||x_{i}||x_{j}|$$

$$\leq \left(\sum_{i,j=1}^{N} ||a_{ij}(t)||_{\infty}\right) |x|^{p},$$

[☆] Supported by the National Natural Science Foundation of China (No. 10771173, No. 11071198) & the Fundamental Research Funds for the Central Universities.

^{*} Corresponding author. Tel.: +86 23 68253135; fax: +86 23 68253135. E-mail address: tangcl@swu.edu.cn (C.-L. Tang).

then there exists a constant $\overline{\lambda} \leq \sum_{i,j=1}^{N} \|a_{ij}(t)\|_{\infty}$ such that $(A(t)|x|^{p-2}x,x) \leq \overline{\lambda}|x|^p$ for all $x \in \mathbb{R}^N$. So, we have

$$\min\{1,\underline{\lambda}\}\|u\|^p \le \|u\|_A^p \le \max\{1,\overline{\lambda}\}\|u\|^p,\tag{2}$$

where

$$||u|| = \left(\int_0^T |u(t)|^p dt + \int_0^T |u'(t)|^p dt\right)^{\frac{1}{p}}.$$

Let

$$k_0 = \sup_{u \in W_T^{1,p} \setminus \{0\}} \frac{\|u\|_{\infty}}{\|u\|_{A}}, \quad \|u\|_{\infty} = \sup_{t \in [0,T]} |u(t)|, \tag{3}$$

where $|\cdot|$ is the usual norm in \mathbb{R}^N . Since $W^{1,p}_T \hookrightarrow \mathbb{C}^0$ is compact, one has $k_0 < +\infty$ and for each $u \in W^{1,p}_T$, there exists $\xi \in [0,T]$ such that $|u(\xi)| = \min_{t \in [0,T]} |u(t)|$. Hence, by Hölder's inequality, one has

$$\begin{split} |u(t)| &= \left| \int_{\xi}^{t} u'(s) \mathrm{d}s + u(\xi) \right| \\ &\leq \int_{0}^{T} |u'(s)| \mathrm{d}s + \frac{1}{T} \int_{0}^{T} |u(\xi)| \mathrm{d}s \\ &\leq \int_{0}^{T} |u'(s)| \mathrm{d}s + \frac{1}{T} \int_{0}^{T} |u(s)| \mathrm{d}s \\ &\leq \int_{0}^{T} |u'(s)|^{p} \mathrm{d}s + \frac{1}{T} \int_{0}^{T} |u(s)|^{p} \mathrm{d}s \\ &\leq T^{\frac{1}{q}} \left(\int_{0}^{T} |u'(s)|^{p} \mathrm{d}s \right)^{\frac{1}{p}} + T^{-\frac{1}{p}} \left(\int_{0}^{T} |u(s)|^{p} \mathrm{d}s \right)^{\frac{1}{p}} \\ &\leq \max\{T^{\frac{1}{q}}, T^{-\frac{1}{p}}\} \left(\left(\int_{0}^{T} |u'(s)|^{p} \mathrm{d}s \right)^{\frac{1}{p}} + \left(\int_{0}^{T} |u(s)|^{p} \mathrm{d}s \right)^{\frac{1}{p}} \right) \\ &\leq \sqrt[q]{2} \max\{T^{\frac{1}{q}}, T^{-\frac{1}{p}}\} \left(\int_{0}^{T} |u'(s)|^{p} \mathrm{d}s + \int_{0}^{T} |u(s)|^{p} \mathrm{d}s \right)^{\frac{1}{p}} \\ &= \sqrt[q]{2} \max\{T^{\frac{1}{q}}, T^{-\frac{1}{p}}\} \|u\| \end{split}$$

for each $t \in [0, T]$ and $q = \frac{p}{p-1}$. So, by (2) and the above expression, we have

$$\|u\|_{\infty} < \sqrt[q]{2} \max\{T^{\frac{1}{q}}, T^{-\frac{1}{p}}\}\|u\| < \sqrt[q]{2} \max\{T^{\frac{1}{q}}, T^{-\frac{1}{p}}\}(\min\{1, \lambda\})^{\frac{-1}{p}}\|u\|_{A}$$

then from this and (3) it follows that

$$k_0 \le k := \sqrt[q]{2} \max\{T^{\frac{1}{q}}, T^{-\frac{1}{p}}\} (\min\{1, \underline{\lambda}\})^{\frac{-1}{p}}. \tag{4}$$

As usual, a weak solution of problem (1) is any $u \in W_T^{1,p}$ such that

$$\int_{0}^{T} ((|u'(t)|^{p-2}u'(t), v'(t)) + (A(t)|u(t)|^{p-2}u(t), v(t)))dt$$

$$= \lambda \int_{0}^{T} (\nabla F(t, u(t)), v(t))dt + \mu \int_{0}^{T} (\nabla G(t, u(t)), v(t))dt$$
(5)

for all $v \in W_T^{1,p}$.

In recent years, the three critical points theorem (see [1]) of Ricceri was widely used to solve differential equations, see [2–8] and references therein. In [2–6], these authors have studied the existence of at least three weak solutions for the Dirichlet boundary value problem. In [7], Bonanno and Candito have obtained three solutions for the Neumann problem involving the p-Laplacian. In [8], the existence of at least three weak solutions has been established for a class of quasilinear elliptic systems involving the (p, q)-Laplacian with Dirichlet boundary condition.

When p=2, problem (1) becomes a second order Hamiltonian system which has been extensively investigated in many papers, such as [9–11]. In [9], Bonanno and Livrea have studied the existence and multiplicity of solutions for the eigenvalue problem corresponding to the nonlinear second-order Hamiltonian systems

$$\ddot{u} = A(t)u - \lambda b(t)\nabla G(u), \quad t \in [0, T],$$

 $u(T) - u(0) = \dot{u}(T) - \dot{u}(0) = 0.$

Download English Version:

https://daneshyari.com/en/article/841785

Download Persian Version:

https://daneshyari.com/article/841785

Daneshyari.com