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1. Introduction

Let E and E* be a real reflexive Banach space and its dual space, respectively, and let ¢, ¢, : E — (—00, 00] be proper
(i.e., ¢1, ¢ % 00) lower semicontinuous convex functionals with the effective domains D(¢;) := {u € E; ¢;(u) < oo} for
i = 1, 2. Then the subdifferential operator dz¢; : E — 2E* of ¢; is defined by

Ipi(u) == {& € E*; ¢i(v) — ¢i(w) > (&, v —u)g forallv € D(¢)} ,
where (-, -)g denotes the duality pairing between E and E*, with the domain D(dg¢;)) = {u € D(¢;); dgpi(u) # @} for
i = 1, 2. This paper provides a new sufficient condition for the maximal monotonicity of the sum dz¢; + 9g¢, in E x E* and
an application to nonlinear elliptic operators in LP-spaces.

This paper is motivated by the question of whether the following operator .M is maximal monotone in [P (£2) x L”/(Q)

withp € [2, 00),p’ = p/(p — 1) and a bounded domain £2 of RV:

M :D(M) CIP(2) = 1P (2);  ur> —Apu+ (), (1)
where § is a maximal monotone graph in R such that 8(0) > 0, and A, is a modified Laplacian given by

Apu=V-(IVu"?Vu), 1<m<oo
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equipped with the homogeneous Dirichlet boundary condition, i.e., u|3; = 0.The operator M can be divided into two parts:
ur> —Aguand u — B(u(-)), and they are maximal monotone in LP(§2) x L”/(SZ). Indeed, set E = [P (£2) and put

1

$1(u) == a/ |Vu(x)|™dx ifu e Wy™(£2), "
oo ’ otherwise,

$r() = / juG)dx i) € 1'(@), 3)
Og otherwise,

wherej : R — (—o0, o0] is a proper lower semicontinuous convex function such that 9j = . Then ¢; and ¢, are
lower semicontinuous and convex in E, and moreover, dg¢(u) and dg¢, (1) coincide with — A, u equipped with ul3o, = 0
and B(u(-)), respectively. Although every subdifferential operator is maximal monotone, the sum of two subdifferential
operators might not be maximal monotone. Hence it is not obvious whether the operator M = 0g¢p; + Jg¢p, is maximal
monotone in E x E* or not.

The maximality for the sum of two maximal monotone operators was well studied in Hilbert space settings (see [1,2]).
These results were combined with nonlinear semigroup theory founded by Komura [3]in 1967 and developed later by Brézis
and many other people for the study of nonlinear evolution equations. As for Banach space settings, a couple of sufficient
conditions are proposed by Brézis et al. [4] (see also [5,6]). Let A and B be maximal monotone operators from E into E*. Their
results ensure the maximal monotonicity of A + Bin E x E* if one at least of the following conditions is satisfied:

(i) D(A) N (IntD(B)) # ¥,
(ii) B is dominated by A, i.e.,, D(A) C D(B) and ||B(u)||gx < k||A(w)||g+ + £(Julg) for all u € D(A) with k € (0, 1) and a
non-decreasing function £ in R.

Here we write ||C||g+ := inf{|c|gx; ¢ € C} for each non-empty subset C of E*. Furthermore, if B is a subdifferential operator,
the following condition (iii) also ensures the maximal monotonicity of A + B, and this fact is proved in [2] for when
E = E* = H is a Hilbert space; however, it can be naturally extended to a Banach space setting.

(iii) B = dg¢ with a proper, lower semicontinuous convex function ¢ : E — (—00, +00], and
d(hu) < ¢p(u)+Cr foru e D(¢)and A > 0, (4)
where J;, denotes the resolvent of Ain E.

Here the resolventJ, : E — D(A) is given such that u; := J,u is a unique solution of Fg (u;, — u) +A(u,) > 0, where Fg stands
for the duality mapping between E and E*, for each u € E.

However, these results could not be applied directly to our setting for (1). As for (i), neither D(dg¢1) nor D(dg¢,) might
have any interior points in E (=L?(£2)). Condition (ii) cannot be checked unless an appropriate growth condition is imposed
on B. Condition (iii) is available for the case where p = 2, because the duality mapping Fz of E = [2(£2) is the identity and
the resolvent J; for dg¢, has a simple representation formula,

G x) = (1+18)"Nu(x)) forae.x e £2, (5)

which enables us to check (4). However, it is somewhat difficult to check (4) for the case where p # 2. Actually, the relation
between the resolvents of dg¢, and B is unclear, since the duality mapping Fg is severely nonlinear whenever p # 2 (see
(20) below).

In this paper we propose a new sufficient condition for the maximality of dg¢1 4 0g ¢, in E X E* such that the representation
formula (5) in L?(£2) can be effectively used in applications to nonlinear elliptic operators such as (1). More precisely, we
introduce a Hilbert space H as a pivot space of the triplet E < H = H* < E* and an extension ¢ of ¢, to H, and moreover,
we give a sufficient condition for the maximality in terms of the resolvent and the Yosida approximation for BH¢§’ .

The treatment of the operator .M in [P (£2) with p # 2 is required from recent studies on severely nonlinear problems
such as generalized Allen—-Cahn equations of the form

ueP2uy — Amu + B(W) +g) > f in2 x (0, 00), (6)
u=0 onds x (0, co0), (7)
u(-,0) =up in$2 (8)

with a non-monotone functiong : R — R. The main difficulty of treating (6) arises from the nonlinearity in u,. To avoid this,
one often chooses E = LP(£2) as a base space of analysis, since the mapping u +— |u|’~u from E into E* has fine properties.
Moreover, (6)-(8) can be reduced to the Cauchy problem for the following evolution equation in E* = i (£2):

Y (W' (1) + e (u(t)) +gu(, 0) > f(t) inE",
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