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a b s t r a c t

Under a mild regularity assumption, we derive an exact formula for the Fréchet coderiva-
tive and some estimates for the Mordukhovich coderivative of the normal cone mappings
of perturbed polyhedra in reflexive Banach spaces. Our focus point is a positive linear inde-
pendence condition, which is a relaxed form of the linear independence condition employed
recently by Henrion et al. (2010) [1], and Nam (2010) [3]. The formulae obtained allow us
to get new results on solution stability of affine variational inequalities under linear per-
turbations. Thus, our paper develops some aspects of the work of Henrion et al. (2010) [1]
Nam (2010) [3] Qui (in press) [12] and Yao and Yen (2009) [6,7].
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1. Introduction

Consider a real Banach space X with the dual denoted by X∗, a finite index set T = {1, 2, . . . ,m}, a vector system
{a∗

i ∈ X∗
| i ∈ T }, and a polyhedral convex set (a polyhedron, for brevity)

Θ(b) = {x ∈ X | ⟨a∗

i , x⟩ ≤ bi for all i ∈ T }. (1.1)

Here b := (b1, . . . , bm) ∈ Rm is a parameter.We interpret b1, . . . , bm as right-hand side perturbations of the linear inequality
system

⟨a∗

i , x⟩ ≤ bi, i ∈ T . (1.2)

The active index set corresponding to a pair (x, b), where x ∈ Θ(b), is defined by

I(x, b) = {i ∈ T | ⟨a∗

i , x⟩ = bi}. (1.3)

For a subset I ⊂ T , put I = T \ I . By bI (resp., bI ) we denote the vector with the components bi where i ∈ I (resp., i ∈ I).
The two-variable multifunction F : X × Rm ⇒ X∗,

F (x, b) := N(x; Θ(b)) ∀(x, b) ∈ X × Rm, (1.4)
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where

N(x; Θ(b)) =


{x∗

∈ X∗
| ⟨x∗, u − x⟩ ≤ 0 ∀u ∈ Θ(b)} if x ∈ Θ(b)

∅ if x ∉ Θ(b)

represents the cone normal toΘ(b) at x in the sense of convex analysis, is said to be the normal conemapping of the perturbed
polyhedron Θ(b).

It is well-known [1–7] that generalized differentiability properties of F (·) lead to useful information on solution
sensitivity/stability of variational inequalities with polyhedral convex constraint sets. Namely, if W is Banach space and
f : X × W → X∗ is a continuously Fréchet differentiable function, then the solution set of the parametric variational
inequality problem

Find x ∈ Θ(b) s.t. ⟨f (x, w), u − x⟩ ≥ 0 ∀u ∈ Θ(b), (1.5)

coincides with the implicit multifunction

G(w, b) := {x | 0 ∈ f (x, w) + N(x; Θ(b))} (1.6)

defined by the inclusion (called a generalized equation)

0 ∈ F(x, w, b) := f (x, w) + N(x; Θ(b)). (1.7)

As has been shown in [8–11] and the references therein, the problem of computing the Fréchet and Mordukhovich
coderivatives for the implicit multifunction (w, b) → G(w, b) can be reduced (in some sense) to the computation of the
coderivatives of themultifunction (x, w, b) → F(x, w, b). Further, since F(x, w, b) is the sumof a differentiable function and
the normal cone mapping F (x, b) := N(x; Θ(b)), it suffices to compute the coderivatives of F and apply the coderivative
sum rules with equalities in [11, Theorem 1.62].

In this paper, under a mild regularity assumption, we derive an exact formula for the Fréchet coderivative and some
estimates for the Mordukhovich coderivative of the normal cone mapping F (·). Our focus point is a positive linear
independence condition, which is a relaxed form of the linear independence condition employed recently by Henrion et al.
[1], and Nam [3]. The formulae obtained allow us to get new results on solution stability of affine variational inequalities
under linear perturbations. Thus, our paper develops some aspects of the work of [1,3,12,6,7].

The organization of the rest of the paper is as follows. Section 2 recalls some basic definitions of variational analysis
(Fréchet and limiting normal cones for sets, Fréchet and Mordukhovich coderivatives of multifunctions), introduces the
above-mentioned positive linear independence condition, and establishes two useful lemmas. The Fréchet coderivative and
the Mordukhovich coderivative of F (·) are computed, respectively, in Sections 3 and 4. The last section presents some
applications of the results of Sections 3 and 4 to parametric affine variational inequalities.

2. Basic definitions and preliminaries

2.1. Basic definitions

For a multifunction Ψ : X ⇒ X∗, the symbol Lim supx→x Ψ (x) denotes the sequential Kuratowski–Painlevé upper limit
with respect to the norm topology of X and the weak* topology of X∗, i.e.,

Lim sup
x→x

Ψ (x) = {x∗
∈ X∗

| ∃ sequences xk → x, x∗

k
w∗

→ x∗, with x∗

k ∈ Ψ (xk) for all k = 1, 2, . . .}.

The setNε(x; Ω) of the Fréchet ε-normals [11] of Ω at x ∈ Ω is

Nε(x; Ω) :=


x∗

∈ X∗
| lim sup

x
�
→x

⟨x∗, x − x⟩
‖x − x‖

≤ ε


, (2.1)

where the notation x
�
→ x means x → x and x ∈ Ω . For ε = 0, the set in (2.1) is a closed convex cone which is termed the

Fréchet normal cone of Ω at x and is denoted byN(x; Ω). One putsNε(x; Ω) = ∅ for all ε ≥ 0 when x ∉ Ω . The cone

N(x; Ω) := Lim sup
x→x, ε↓0

Nε(x; Ω), (2.2)

which is generally nonconvex and nonclosed [11, Example 1.7], is said to be the limiting normal cone (other names: the basic
normal cone [11], theMordukhovich normal cone) of Ω at x. If x ∉ Ω , then one puts N(x; Ω) = ∅.

If X is an Asplund space [11, Definition 2.17] then the expression on the right-hand side of (2.2) can be simplified. Namely,
if X is such a space and Ω is locally closed around x then, according to [11, Theorem 2.35],

N(x; Ω) := Lim sup
x→x

N(x; Ω). (2.3)
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