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a b s t r a c t

We study least energy solutions of a quasilinear Schrödinger equation with a small param-
eter. We prove that the ground state is nondegenerate and unique up to translations and
phase shifts using bifurcation theory.
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1. Introduction

In this paper we consider the following quasilinear Schrödinger equation:

i∂tφ(t, x) + 1φ(t, x) + λφ(t, x)1|φ(t, x)|2 + |φ(t, x)|p−1φ(t, x) = 0 (t, x) ∈ (0, ∞) × RN ,

φ(0, x) = φ0(x) x ∈ RN ,
(1)

where i is the imaginary unit, N ≥ 1, p > 1 and φ : RN
→ C. This equation appears in different physical models, such as

the superfluid film equation in plasma physics. We refer the reader to [1] for a more detailed bibliography on the physical
background. Themathematical theory for this equation is still not well established, even as regards the short time dynamics.
Themain difficulty which arises in the study of the Cauchy problem for this equation is the presence of the quasilinear term,
which causes the phenomenon called loss of derivatives. To overcome this problem, one asks for high regularity for the initial
datum and then the local well-posedness can be proved just in Sobolev spaces of high order. In particular there are no local
well-posedness results for the energy space (see (4)) and so a Gagliardo–Nirenberg type inequality (which is available, as
proved in [1]) cannot guarantee global well-posedness. For themain results in this direction we refer the reader to Colin [2],
Colin et al. [1], Kenig et al. [3], Lange [4], Poppenberg [5], and Poppenberg et al. [6]. Despite still not having a satisfactory
theory of local well-posedness, mathematicians have been able to prove the existence of a special class of time periodic
solutions in the form φ(t, x) = u(x)eiωt called standing waves, representing particle at rest. Here u : RN

→ C solves the
quasilinear elliptic equation

− 1u − λu1|u|2 + ωu − |u|p−1u = 0, (2)

while ω > 0 is the time–frequency region. Eq. (2) is variational and is the Euler–Lagrange equation of the associated energy
functional Eλ

ω which is

Eλ
ω(u) =

1
2

∫
RN

|∇u|2dx +
λ

4

∫
RN

|∇|u |
2
|
2dx +

ω

2

∫
RN

|u|2dx −
1

p + 1

∫
RN

|u|p+1dx. (3)
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The natural space in which this functional is well-defined (see [1,7]) is the following:

XC =


u ∈ H1(RN , C) :

∫
RN

|u|2|∇|u| |2dx < ∞


. (4)

Thanks to the variational structure, solutions of Eq. (2) can be found by means of critical point theory. An important role
is played by least energy solutions which are commonly called ground states. Their main feature is that they minimize the
energy, namely they satisfy

Eω(u) = mλ
ω, (5)

where

mλ
ω = inf{Eω(u) : u is a nontrivial weak solution of (2)}.

We denote by Gλ
ω the set of weak solutions to (2) satisfying (5). Some authors have studied solutions belonging to the set

Gλ
ω; see for example [8]. More results exist for not necessarily least energy solutions: we mention the works by Colin and

Jeanjean [9], Liu et al. [10] and Liu and Wang [11]. The most complete result (to our knowledge) concerning ground states
of (2) is due to Colin et al. [1] (in the case λ = 1) who proved that ground states exist, are real and positive (up to phase
shifts) classical solutions, decay exponentially at infinity with their first and second derivatives and moreover are radial
with respect to some point. For the precise statement of their result we refer the reader to Section 2, Theorem 2.2.

The first result of the present paper answers the problem of uniqueness for λ small enough, which was left open in [1].

Theorem 1.1. Let 1 < p < 2∗. There exists λ̄ such that for 0 < λ < λ̄ there exists only one real, positive, radial and
exponentially decaying ground state uλ(x) of Eq. (2). Moreover suppose v ∈ Gλ

ω; then there exists ξ ∈ RN and θ ∈ [0, 2π ]

such that vλ(x) = uλ(x − ξ)eiθ , where uλ(x) is the only real, positive, radial and exponentially decaying ground state of (2).

A natural question which arises when one deals with ground states is that of their orbital stability or instability. In [1]
the authors proved that for p > 3 +

4
N ground states are unstable to blow-up, while they give only partial results

for the complementary case. A first step towards the complete answer is understanding whether the ground state uλ is
nondegenerate, whichmeans that the kernel of the linearized operator around uλ associatedwith Eq. (2) is entirely spanned
by the infinitesimal generators of the symmetries of the equation. As regards this issue we have the following result.

Theorem 1.2. Let 1 < p < 2∗. There exists λ̄ (the same as in Theorem 1.1) such that for 0 < λ < λ̄ the ground state uλ of
Eq. (2) is nondegenerate in the sense of Definition 1.3.

Here is our definition of nondegeneracy for uλ.

Definition 1.3. The ground state uλ of (2) is nondegenerate if and only if the following properties hold:

• (ND) ker[I ′′(uλ)] =


iuλ(x),

∂uλ(x)
∂xj

, j = 1, . . . ,N

;

• (Fr) I ′′(uλ) is an index 0 Fredholm map.

The proving of these facts is carried out through bifurcation theory. It is not the first time that bifurcation theory has
been used to study Eq. (2): we refer the reader to Liu et al. [12] and to Liu and Wang [13] for related results. However here
we do not need their results thanks to the change of variable presented in Section 2.1. The range of p is not the optimal one
in either of the theorems; for more details we refer the reader to Remark 2.8 at the end of the paper.

2. Proofs of the main theorems

2.1. Existence of the ground state for fixed λ

The existence result is mainly a consequence of the works of Colin and Jeanjean [9] and Colin et al. [1]. Looking for a
ground state of (2) and following the strategy of [9,1] we use a change of unknown, u = fλ(v), where fλ is a solution of the
following Cauchy problem:

f ′

λ(t) =
1

1 + 2λf 2λ (t)
, fλ(0) = 0. (6)

We have the following lemma:

Lemma 2.1. 1. fλ is uniquely defined, smooth and invertible;
2. |f ′

λ| ≤ 1 for t ∈ R;
3. fλ(t)

t → 0 as t → 0;

4. fλ(t)
√
t

→ 2
1
4 λ

1
2 .
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