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a b s t r a c t

Meteorological sensor networks are often used across agricultural regions to calculate the ASCE
Standardized Reference Evapotranspiration (ET) Equation, and inaccuracies in individual sensors can lead
to inaccuracies in ET estimates. Multiyear datasets from the semi-arid Colorado Agricultural Meteorolog-
ical (CoAgMet) and humid Florida Automated Weather Network (FAWN) networks were evaluated using
a local sensitivity analysis (LSA) method which calculated the total error range of each individual sensor,
as well as Morris and eFAST global sensitivity analysis (GSA) methods which simultaneously evaluated
the full accuracy range of each sensor. Sensitivity of inputs (i.e., temperature, humidity, wind speed,
and solar radiation) generally had values within the same range for the FAWN network with solar radi-
ation being the most influential input in the summer, while sensitivity to wind speed for the CoAgMet
network was much higher than the other inputs. Due to its simplicity and ease of application, LSA is sug-
gested as a minimal screening method for evaluating input sensor sensitivity. GSA results were highly
correlated with each other, but local sensitivity was poorly correlated to GSA methods regarding wind
input in Colorado. Uncertainty analysis showed the current configuration of sensors in the CoAgMet
network to have a higher range of ET values between 5% and 95% confidence intervals, as compared to
the FAWN network. The eFAST GSA method was applied using a hypothetical set of ‘‘best case’’ sensors
in both stations (i.e., sensors with the best accuracy between both sites), showing solar radiation to be
the most influential input in the high ET months of summer, and the sensitivity in Colorado to wind to
be vastly decreased, suggesting that the CoAgMet network could benefit from an upgrade to more
accurate anemometers.

Published by Elsevier B.V.

1. Introduction

In irrigated agriculture, accurate and consistent estimates of
crop evapotranspiration (ETc) are vital in terms of water manage-
ment. At the field scale, ETc can be used for irrigation scheduling
whereas at regional scales knowledge of evapotranspiration (ET)
consumption can be used to evaluate irrigation water resources
planning and distribution. However, because ET is very difficult
to measure directly, it is often estimated using models based on cli-
matic inputs, which individually can be highly variable. The most
common method to estimate ETc is to transform a reference evapo-
transpiration (grass-based ETo or alfalfa-based ETr) by multiplying
with a crop coefficient (Kco or Kcr). The Kc is unique to each crop and
reference type, and can vary with several parameters affecting ET
such as leaf area, soil and climate conditions, and crop stresses

(Doorenbos and Kassam, 1979). While many methods exist to cal-
culate reference ET, physically based approaches such as FAO56
Penman–Monteith (Allen et al., 1998) require more input data
but are generally accepted as the most accurate estimation. The
American Society of Civil Engineers–Environmental and Water
Resources Institute (ASCE–EWRI) created a standardized version
of the Penman–Monteith method for reference ET calculation
(ASCE, 2005), which has notable advantages with respect to com-
monality and transferability of Kc values (Irmak et al., 2006).

Field sensor accuracy is of paramount importance when deter-
mining reference ET using a physical model. Droogers and Allen
(2002) evaluated reference ET estimates using both the Penman–
Monteith (Allen et al., 1998) and Hargreaves (Hargreaves and
Samani, 1985; Hargreaves et al., 1985) methods. They concluded
that the more data intensive (e.g., air temperature, humidity, solar
radiation, wind speed) Penman–Monteith method is recom-
mended if accurate weather data collection is feasible and avail-
able. If data accuracy is questionable the simpler (e.g., air
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temperature and solar radiation only) Hargreaves method should
be considered. While issues such as station siting, proper fetch,
and maintaining adequate reference conditions are very important
in creating consistent measurement conditions, bias or other mea-
surement errors associated with the sensors themselves can cause
tremendous error in the final outputs of the equations. Therefore, it
is desirable to fully understand the potential influence of sensor-
based measurement error on the final reference ET calculation.

Manufacturers of environmental measurement sensors (e.g.,
anemometers, pyranometers, temperature/humidity sensors) typi-
cally quote an ‘‘accuracy’’ of the device, often in terms of ± a per-
centage or static value. One way to evaluate and quantify the
influence of quoted sensor accuracy on reference ET is through sen-
sitivity analysis (SA), which Saltelli et al. (2004) defined as ‘‘the
study of how uncertainty in the output of a model (numerical or
otherwise) can be apportioned to different sources of uncertainty
in the model input.’’ The aim of SA is to determine how sensitive
the output of a model is with respect to the elements of the model,
which are subject to uncertainty or variability. SA methods are
typically classified as local [one-parameter-at-a-time (OAT) and
derivative-based] or global (multiple parameters at a time, deriva-
tive-based or more often variance-based) (Saltelli et al., 2008;
Sobol and Kucherenko, 2009). When the purpose of the SA is to
study the effects of several input parameters on the model output
responses, local sensitivity analysis (LSA) is more simple but less
useful than global sensitivity analysis (GSA) where the output var-
iability is evaluated as the input parameters simultaneously vary in
their individual uncertainty domains (Monod et al., 2006; Saltelli
et al., 2004). GSA methods, such as Morris (1991), Fourier Ampli-
tude Sensitivity Test (FAST, Saltelli et al., 1999), extended FAST
(Saltelli et al., 1999) and Sobol’ (1993) can determine not only sen-
sitivity to individual parameters, but sensitivity to interactions
between parameters as well. GSA methods are commonly used
as auxiliary tools for many different types of simulation models,
including hydrologic (Ahmadi et al., 2014), ecological (Ciric et al.,
2012; Morris et al., 2014), and crop models (DeJonge et al., 2012;
Vazquez-Cruz et al., 2014).

Several studies have investigated sensitivity analysis of ET esti-
mation equations, typically using derivative-based LSA methods,
with widely varying results due to differences in climate, ET mod-
els used, and meteorological and/or physical inputs evaluated
(Ambas and Baltas, 2012; Bakhtiari and Liaghat, 2011; Beven,
1979; Coleman and DeCoursey, 1976; Eslamian et al., 2011; Gong
et al., 2006; Hupet and Vanclooster, 2001; Irmak et al., 2006; Ley
et al., 1994a; Liang et al., 2008; Rana and Katerji, 1998). A limited
number of studies evaluated two parameters at a time but still
used derivative-based methods for evaluating sensitivity
(Eslamian et al., 2011; Porter et al., 2012). Monte-Carlo uncertainty
analysis of potential ET has even been evaluated on a spatial basis
(Phillips and Marks, 1996). However, no study to date has fully uti-
lized variance-based GSA techniques to simultaneously evaluate
multiple inputs of ET models. Also, previous studies in the litera-
ture somewhat arbitrarily choose an error range for the input
parameters, instead of selecting an input error range based on
manufacturer quoted sensor accuracy. In one study closely related
to this manuscript, Ley et al. (1994b) evaluated the effects of sen-
sor measurement variability in the Kimberly Penman alfalfa ETr

model, finding that at the limits of specified accuracy the greatest
ET error was from solar radiation measurement error followed by
dew point, maximum temperature, and finally wind speed mea-
surement errors.

The above studies in the literature explore SA of micrometeoro-
logical input variables in ET models; however, they are site specific,
do not use GSA methods, and rarely use sensor accuracy limits as a
basis for comparison. Thus, the primary objective of this study was
to evaluate the effect of manufacturer quoted accuracy of required

sensors (i.e., temperature, humidity, wind speed, and solar radia-
tion) on short reference evapotranspiration (ETos) calculations
using the ASCE Standardized Reference Evapotranspiration Equa-
tion. Multiyear datasets from semi-arid (Colorado) and humid
(Florida) meteorological sensor networks were evaluated using a
LSA method, as well as two GSA (Morris and eFAST) methods. Sec-
ondary study objectives were to compare sensitivity results of the
three SA methods used in the study, conduct an uncertainty anal-
ysis of eFAST results to further quantify ET error range in high ET
months, and to perform a final eFAST GSA on both sites using a
‘‘best case’’ (i.e., sensor set with the best accuracy between both
sites) set of input sensors in order to directly compare difference
in sensitivity between sites due to climate differences.

2. Methods

2.1. ASCE standardized reference ET equation

The ASCE Standardized Reference Evapotranspiration Equation
(ASCE, 2005) is intended to simplify the full form ASCE Penman–
Monteith method:

ETSZ ¼
0:408DðRn � GÞ þ c Cn

Tþ273 u2ðes � eaÞ
Dþ cð1þ Cdu2Þ

ð1Þ

where ETsz is the standardized reference crop ET rate for short (ETos)
or tall (ETrs) surfaces (mm d�1), Rn is the net radiation flux density
at the surface (MJ m�2 d�1), G denotes the sensible or soil heat flux
density from the surface to the soil (MJ m�2 d�1), c represents the
psychrometric constant (kPa �C�1), T is mean air temperature (�C),
u2 is wind speed (m s�1) at 2 m above the ground (relative humidity
and dew point are also assumed to be measured at this height), es is
mean saturated vapor pressure (kPa) computed as the mean vapor
pressure as calculated at the daily minimum and maximum tem-
perature, ea is the actual vapor pressure of the air (kPa), and D is
the slope of the saturation vapor pressure versus temperature curve
(kPa �C�1). Measurements are typically made at 2 m above the
ground. Cn and Cd are constants that change with reference type
and calculation time step: for hourly time steps Cn is 37 for short
reference and 66 for tall reference, whereas Cd is 0.24 (day) or
0.96 (night) for short reference crops and 0.25 (day) and 1.7 (night)
for tall reference crops (ASCE, 2005). The variable D is computed as:

D ¼
2503 exp 17:27T

Tþ237:3

� �

ðT þ 237:3Þ2
ð2Þ

using T as mean air temperature (�C). Saturation vapor pressure es

(kPa) is given by:

es ¼
eoðTmaxÞ þ eoðTminÞ

2
ð3Þ

where Tmax is maximum daily temperature, Tmin is minimum daily
temperature, and eo(T) is a saturation vapor pressure function calcu-
lated as:

eoðTÞ ¼ 0:6108 exp
17:27T

T þ 237:3

� �
ð4Þ

where vapor pressure is in units of kPa and temperature is in �C.
Actual vapor pressure ea is expressed by:

ea ¼
eoðTminÞ RHmax

100 þ eoðTmaxÞ RHmin
100

2
ð5Þ

where RHmax and RHmin are maximum and minimum daily relative
humidity, respectively. As shown in the above equations, variables
D and es are calculated from temperature, and ea can be determined
by temperature and relative humidity. Thus, simplification of Eq. (1)
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