Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Some fundamental properties for duals of Orlicz spaces

Yunan Cui^a, Henryk Hudzik^{b,*}, Jingjing Li^a

^a Department of Mathematics, Harbin University of Science and Technology, Harbin, 150080, PR China ^b Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland

ARTICLE INFO

Article history: Received 3 February 2009 Accepted 4 May 2010

MSC:

46B04 46B10 46B20 46B25 46B40 46B42 46E30 46A20 46A40 46A80 Keywords: Convex modular Orlicz space Dual space Luxemburg norm Orlicz norm Amemiya formula Extreme point Regular functional Singular functional

1. Introduction and preliminaries

Let X be a real vector space. A function $\rho : X \rightarrow [0, +\infty]$ is called a convex modular if it satisfies the following conditions (see [1–5]):

(i) $\rho(0) = 0$ and x = 0 whenever $x \in X$ and $\rho(ax) = 0$ for any a > 0,

(ii)
$$\rho(-x) = \rho(x)$$
 for any $x \in X$,

(iii) $\rho(ax + by) \le a\rho(x) + b\rho(y)$ for all $x, y \in X$ and $a, b \ge 0$ with a + b = 1.

Define the modular space $X_{\rho} = \{x \in X : \lim_{\lambda \to 0^+} \rho(\lambda x) = 0\}$. For any $x \in X_{\rho}$, the Luxemburg norm is defined by

 $\|x\|_{\rho} = \inf\{k > 0 : \rho(k^{-1}x) \le 1\},\$

ABSTRACT

In this paper some basic properties of Orlicz spaces are extended to their dual spaces, and finally, criteria for extreme points in these spaces are given.

© 2010 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +48 61 8295356; fax: +48 61 8295315. *E-mail addresses*: yunan_cui@yahoo.com.cn (Y. Cui), hudzik@amu.edu.pl (H. Hudzik), li-jingjing@163.com (J. Li).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.05.010

and the Orlicz norm is defined by the Amemiya formula:

$$\|x\|_{\rho}^{o} = \inf_{k>0} k^{-1} (1 + \rho(kx)).$$

Denote by \mathbb{N} and R the sets of all natural numbers and real numbers, respectively. In this paper a map $\Phi : R \to [0, \infty]$ is said to be an Orlicz function if Φ is even, convex, left continuous in the extended sense (which means that infinite limits are not excluded) on $R_+ = [0, \infty)$, Φ vanishes only at 0 and Φ is not identically equal to zero (see [6,1,3,7]).

For any Orlicz function Φ , we define its complementary function $\Psi: R \to [0, \infty)$ by the formula

$$\Psi(v) = \sup_{u>0} \{ u|v| - \Phi(u) \}$$

for every $v \in R$. It is well known that Ψ is also an Orlicz function, whenever $(\Phi(u)/u) \to 0$ as $u \to 0$.

By p(u), q(v) and $p_{-}(u)$, $q_{-}(v)$ we denote the right and the left derivative of $\Phi(u)$ and $\Psi(v)$, respectively. For every $u, v \in R$, we have the following Young inequality

$$uv \le |uv|\Phi(u) + \Psi(v),$$

and the equality $uv = \Phi(u) + \Psi(v)$ holds for any $v \in \mathbb{R}$ iff $u \in [q_-(v), q(v)]$ or for any $u \in \mathbb{R}$ iff $v \in [p_-(u), p(u)]$.

Let (G, Σ, μ) be a measure space with a σ – *finite* nonatomic and complete measure μ and $L^{0}(\mu)$ be the space of all μ -equivalence classes of real valued and Σ -measurable functions defined on G. We say that an Orlicz function Φ satisfies the Δ_2 -condition ($\Phi \in \Delta_2$ for short), if there exists a constant K > 0 such that $\Phi(2u) \leq K\Phi(u)$ for all $u \geq 0$ if $\mu(G) = \infty$ (resp., for every $u \geq u_0$ and some $u_0 > 0$ with $\Phi(u_0) < \infty$ if $\mu(G) < \infty$). Given and Orlicz function Φ we define a convex function $I_{\Phi} : L^{0}(\mu) \to [0, \infty]$ (see [8,6,1–5,9,7]) by

$$l_{\Phi}(x) = \int_{G} \Phi(x(t)) \mathrm{d}\mu(t).$$

It is clear that I_{Φ} is a convex modular on $L^{0}(\mu)$. Then the Orlicz function space L_{Φ} and its subspace E_{Φ} are defined as follows:

$$L_{\Phi} = \{x \in L^{0}(\mu) : I_{\Phi}(cx) < \infty \text{ for some } c > 0\},\$$

 $E_{\Phi} = \{ x \in L^{o}(\mu) : I_{\Phi}(cx) < \infty \text{ for any } c > 0 \}.$

Denote by $\|\cdot\|_{\phi}$, $\|\cdot\|_{\phi}^{o}$ the Luxemburg norm and the Orlicz norm on the space L_{ϕ} , respectively. To simplify notations, we put $L_{\phi} = (L_{\phi}, \|\cdot\|_{\phi})$ and $L_{\phi}^{o} = (L_{\phi}, \|\cdot\|_{\phi}^{o})$. Let us note that Orlicz [9] defined the Orlicz norm on L_{ϕ} by use of another formula

$$\|x\|_{\varPhi}^{o} = \sup\left\{\int_{G} x(t)y(t)d\mu(t) : I_{\Psi}(y) \leq 1\right\}.$$

Hudzik and Maligranda have proved in [10] that the above norm coincides in L_{ϕ} with the norm defined by the Amemiya formula for any Orlicz function ϕ .

Let Φ be an Orlicz function. An interval [a, b] is called a structural affine interval of Φ , or simply, SAI of Φ , provided that Φ is affine on [a, b] and it is not affine on either $[a - \varepsilon, b]$ or $[a, b + \varepsilon]$ for any $\varepsilon > 0$. Let $\{[a_i, b_i]\}_i$ be the sequence of all SAIs of Φ . We call the set

$$S_{\Phi} = R \setminus \left[\bigcup_{i} (a_i, b_i)\right]$$

as the set of strictly convex points of Φ . Let us note that $R \setminus S_{\phi}$ is the union of at most countably many intervals.

Let B(X) and S(X) be the unit ball and the unit sphere of a Banach space X, respectively. A point $x \in B(X)$ is called an extreme point of B(X) if 2x = y + z and $y, z \in B(X)$ imply y = z. The set of all extreme points of B(X) is denoted by ext B(X). It is evident that ext $B(X) \subset S(X)$. We denote by L_{ϕ}^* the dual space of L_{ϕ} and $\varphi \in L_{\phi}^*$ is called a singular functional or simply, $\varphi \in F$, if $\varphi(E_{\phi}) = \{0\}$.

Let us recall that in [11] global smoothness, non-squareness and rotundity properties of the duals and the biduals of Orlicz spaces have been considered.

The following result is due to Ando (see [12]), who proved the result for *N*-functions Φ (that is for finitely valued Orlicz functions Φ which satisfy $\Phi(u)/u \to 0$ as $u \to 0$ and $\Phi(u)/u \to \infty$ as $u \to \infty$) only. However, the result is also true for arbitrary Orlicz function Φ by the result of Maligranda and Wnuk [2] who proved that the Köthe dual of the Orlicz space L_{ϕ} is the Orlicz space L_{ψ}^0 , where Ψ is the function complementary to Φ in the sense of Young, as well as by the general result which says that the topological dual of any Köthe space *E* is equal to the direct sum of the Köthe dual *E'* and the singular dual of *E* (see [13]).

Lemma 1.1. Any functional $f \in L^*_{\phi}$ has a unique decomposition

$$f = v + \varphi \quad (v \in L_{\Psi}, \varphi \in F),$$

where v means in fact the regular functional defined by the function v on L_{Φ} by the formula $\langle v, x \rangle = \int_{G} v(t)x(t)d\mu(t)$ for any $x \in L_{\Phi}$.

(1.1)

Download English Version:

https://daneshyari.com/en/article/841826

Download Persian Version:

https://daneshyari.com/article/841826

Daneshyari.com