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a b s t r a c t

In the present paper, we establish some identities or estimates for the operator norms and
the Hausdorff measures of noncompactness of certain operators given by infinite matrices
that map an arbitrary BK -space into the sequence spaces c0, c , `∞ and `1, and into the
matrix domains of triangles in these spaces. Furthermore, by using the Hausdorff measure
of noncompactness, we apply our results to characterize some classes of compact operators
on the BK -spaces.

© 2010 Elsevier Ltd. All rights reserved.

1. Background, notations and preliminaries

Let X be a normed space. Then, we write SX and B̄X for the unit sphere and the closed unit ball in X , that is, SX = {x ∈
X : ‖x‖ = 1} and B̄X = {x ∈ X : ‖x‖ ≤ 1}. If X and Y are Banach spaces, then B(X, Y ) denotes the set of all bounded
(continuous) linear operators L : X → Y , which is a Banach spacewith the operator norm given by ‖L‖ = supx∈SX ‖L(x)‖Y for
all L ∈ B(X, Y ). A linear operator L : X → Y is said to be compact if the domain of L is all ofX and for every bounded sequence
(xn) in X , the sequence (L(xn)) has a subsequence which converges in Y . We denote the class of all compact operators in
B(X, Y ) by C(X, Y ). An operator L ∈ B(X, Y ) is said to be of finite rank if dim R(L) <∞, where R(L) is the range space of L.
An operator of finite rank is clearly compact.
By w, we shall denote the space of all complex sequences. If x ∈ w, then we write x = (xk) instead of x = (xk)∞k=0. Also,

we write φ for the set of all finite sequences that terminate in zeros. Further, we use the conventions that e = (1, 1, . . .)
and e(k) is the sequence whose only non-zero term is 1 in the kth place for each k ∈ N, where N = {0, 1, 2, . . .}.
Any vector subspace of w is called a sequence space. We shall write `∞, c and c0 for the sequence spaces of all bounded,

convergent and null sequences, respectively. Further, by `1 and `p (1 < p < ∞), we denote the sequence spaces of all
absolutely and p-absolutely convergent series, respectively. Furthermore, we write bs, cs and cs0 for the sequence spaces of
all bounded, convergent and null series, respectively. Moreover, we denote the space of all sequences of bounded variation
by bv, that is, bv =

{
x = (xk) ∈ w : (xk − xk−1) ∈ `1

}
. By the classical sequence spaces, we mean the spaces c0, c , `∞ and

`p (1 ≤ p <∞).
The α-, β- and γ -duals of a subset X ofw are respectively defined by

Xα =
{
a = (ak) ∈ w : ax = (akxk) ∈ `1 for all x = (xk) ∈ X

}
,

Xβ =
{
a = (ak) ∈ w : ax = (akxk) ∈ cs for all x = (xk) ∈ X

}
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and

Xγ =
{
a = (ak) ∈ w : ax = (akxk) ∈ bs for all x = (xk) ∈ X

}
.

Throughout this paper, the matrices are infinite matrices of complex numbers. If A is an infinite matrix with complex
entries ank (n, k ∈ N), then we write A = (ank) instead of A = (ank)∞n,k=0. Also, we write An for the sequence in the nth row
of A, i.e., An = (ank)∞k=0 for every n ∈ N. In addition, if x = (xk) ∈ w, then we define the A-transform of x as the sequence
Ax = (An(x))∞n=0, where

An(x) =
∞∑
k=0

ankxk; (n ∈ N) (1.1)

provided the series on the right converges for each n ∈ N.
Let X and Y be subsets of w and A = (ank) an infinite matrix. Then, we say that A defines a matrix mapping from X into

Y , and we denote it by writing A : X → Y , if Ax exists and is in Y for all x ∈ X . By (X, Y ), we denote the class of all infinite
matrices that map X into Y . Thus A ∈ (X, Y ) if and only if An ∈ Xβ for all n ∈ N and Ax ∈ Y for all x ∈ X .
For any subset X ofw, thematrix domain of an infinite matrix A in X is defined by

XA =
{
x ∈ w : Ax ∈ X

}
.

The theory of FK - and BK -spaces is the most powerful tool in the characterization of matrix transformations between
sequence spaces.
A sequence space X is called an FK -space if it is a complete linear metric space with continuous coordinates pn : X →

C (n ∈ N), where C is the complex field and pn(x) = xn for all x = (xk) ∈ X and every n ∈ N. A BK -space is a normed
FK -space [1], that is, a BK -space is a Banach sequence space with continuous coordinates [2].
The classical sequence spaces are BK -spaces with their natural norms [2, Example 1.1]. More precisely, the spaces c0, c

and `∞ are BK -spaces with the usual sup-norm given by ‖x‖`∞ = supk |xk|, where the supremum is taken over all k ∈ N.
Also, the space `p is a BK -space with the usual `p-norm defined by ‖x‖`p = (

∑
∞

k=0 |xk|
p)1/p, where 1 ≤ p <∞.

A sequence (bn)∞n=0 in a linear metric space X is called a Schauder basis for X if for every x ∈ X there is a unique sequence
(αn)

∞

n=0 of scalars such that x =
∑
∞

n=0 αnbn, that is, limm→∞(
∑m
n=0 αnbn) = x [3, Definition 1.6].

Although the space `∞ has no Schauder basis, the spaces c0, c and `p (1 ≤ p < ∞) all have Schauder bases
[3, Theorem 1.10].
An FK -space X ⊃ φ is said to have AK if every x = (xk) ∈ X has a unique representation x =

∑
∞

k=0 xke
(k), that is,

x[m] =
∑m
k=0 xke

(k)
→ x asm→∞ [4]. Here, x[m] is called them-section of x (m ∈ N).

Among the other classical sequence spaces, the spaces c0 and `p (1 ≤ p <∞) have AK [5, Example 3.16].
If X ⊃ φ is a BK -space and a = (ak) ∈ w, then we define

‖a‖∗X = sup
x∈SX

∣∣∣∣∣ ∞∑
k=0

akxk

∣∣∣∣∣ (1.2)

provided the expression on the right hand side exists and is finite [6], which is the case whenever a ∈ Xβ [7, Theorem 7.2.9].
Throughout, let 1 ≤ p ≤ ∞ and q denote the conjugate of p, that is, q = ∞ for p = 1, q = p/(p− 1) for 1 < p <∞ and

q = 1 for p = ∞.
The following known results are fundamental for our investigation, and wemay begin with the α-, β- and γ -duals of the

classical sequence spaces.

Lemma 1.1 ([5, Example 4.4]). Let Ď denote any of the symbols α, β or γ . Then, we have cĎ0 = c
Ď
= `

Ď
∞ = `1, `

Ď
1 = `∞ and

`
Ď
p = `q, where 1 < p <∞ and q = p/(p− 1).

Lemma 1.2 ([3, Theorem 1.29]). Let X be any of the spaces c0, c, `∞ or `p (1 ≤ p <∞). Then, we have ‖ · ‖∗X = ‖ · ‖Xβ on X
β ,

where ‖ · ‖Xβ denotes the natural norm on the dual space Xβ .

Lemma 1.3 ([8, Lemma 15(a), (b)]). Let X ⊃ φ and Y be BK-spaces. Then, we have

(a) (X, Y ) ⊂ B(X, Y ), that is, every matrix A ∈ (X, Y ) defines an operator LA ∈ B(X, Y ) by LA(x) = Ax for all x ∈ X.
(b) If X has AK , then B(X, Y ) ⊂ (X, Y ), that is, for every operator L ∈ B(X, Y ) there exists a matrix A ∈ (X, Y ) such that
L(x) = Ax for all x ∈ X.

Furthermore, we have the following results on the operator norms.

Lemma 1.4 ([9, Lemma 5.2]). Let X ⊃ φ be a BK-space and Y be any of the spaces c0, c or `∞. If A ∈ (X, Y ), then

‖LA‖ = ‖A‖(X,`∞) = sup
n
‖An‖∗X <∞.
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