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a b s t r a c t

In this paper, a least squares Galerkin–Petrov nonconformingmixed finite elementmethod
(LSGPNMFM) is proposed and analyzed for the stationary Conduction–Convection problem.
We use P2-nonconforming as approximation space for the velocity, the linear element for
the pressure space and the quadratic element for the temperature space. The mixed finite
element spaces Xh andMh need not satisfy inf–sup condition, the existence, uniqueness and
convergence of the discrete solution are presented and error estimates of optimal order are
derived in the case of sufficient viscosity.
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1. Introduction

We consider the following stationary Conduction–Convection problem (cf. [1–4]):
Problem (I) Find u = (u1, u2), p and T such that

−ν∆u+ (u · ∇)u+∇p = λjT , inΩ,
div u = 0, inΩ,
−∆T + λu · ∇T = 0, inΩ,
u = 0, T = T0, on ∂Ω,

(1.1)

where Ω ⊂ R2 be a bounded domain with boundary ∂Ω , u denotes the fluid velocity vector field, p the pressure filed, T
the temperature filed, ν > 0 the coefficient of the kinematic viscosity, λ > 0 the Groshoff number, j = (0, 1) the two-
dimensional vector and T0 the given initial scale function.
The stationary Conduction–Convection problem (I) is the coupled equations governing steady viscous incompressible

flow and heat transfer process, where incompressible fluid is the Boussinesq approximation of the Navier–Stokes equations.
In atmospheric dynamics it is an important compelling dissipative nonlinear system, which contains not only the velocity
vector field and the pressure field but also the temperature field. From the thermodynamics point of view, we know that
the movement of the fluid must have viscosity which will produce quantity of heat. Thus, the movement of the fluid must
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be companied with mutual transformation of temperature, speed and pressure. Therefore, it is very universal to investigate
this nonlinear system.
Formany engineering problems, the least squares formulation provides an attractive alternative to the standard Galerkin

formulation. Irrespective of the type of the underlying partial differential equation, the least squares formulation always
leads to symmetric system matrices, which implies that only half of the coefficients need to be stored. If, in addition,
the system satisfies an a priori coercivity inequality, the least squares formulation generates positive definite algebraic
systemmatrices, which allows one to use well-established solvers, such as preconditioned conjugate gradient methods. On
the other hand, the least squares method does not need the conventional requirement of the inf-sup condition in mixed
finite element methods. Recently, in an attempt to circumvent this constraint, the so-called CBB [5] or stabilized finite
element methods [6–9] have been developed, motivated by SD (or SUPG) methods [10,11]. So far some studies have been
done to the Conduction–Convection problem (cf. [1–4,12–14]), but these studies only given some numerical computational
methods, much more less attention have been paid to the theoretical error analysis of the mixed finite element methods.
In [15], a Galerkin least squares type finite element method is proposed and analyzed for the stationary Navier–Stokes
equations. The existence, uniqueness and convergence of the discrete solution is proved in the case of sufficient viscosity.
Afterwards [16] applied this method to the stationary Conduction–Convection problem, but all the analysis in [15,16] are
about the conforming finite elements. Because of nonconforming elements have been used effectively especially in fluid and
solid mechanics due to their stability. So we are concerned with nonconforming finite element methods for the stationary
Conduction–Convection problem.
Themain aim of this paper is to construct the least squares Galerkin–Petrov nonconformingmixed finite elementmethod

(LSGPNMFM) for the stationary Conduction–Convection problem. The existence, uniqueness and convergence of the discrete
solution are presented and error estimates of optimal order are derived in the case of sufficient viscosity. In Section 2, we
introduce the variational formulation for Problem (I) and the existence and uniqueness of variational formulation solution.
In Section 3, we will give the construction of nonconforming mixed finite element scheme and present LSGPNMFM for the
stationary Conduction–Convection problem. The existence and uniqueness of the LSGPNMFEM solution to the stationary
Conduction–Convection problem will be proved in Section 4. In Section 5, the convergence analysis and optimal error
estimates are obtained by using some important lemmas.
We will employ standard definitions for the Sobolev spacesW k,p(Ω) with norm ‖ · ‖k,p,Ω , and Hk(Ω) = W k,2(Ω) with

norm ‖ · ‖k, respectively (cf. [17]). Throughout the paper, C indicates a positive constant, possibly different at different
occurrences, which is independent of the mesh parameter h, but may depend onΩ and other parameters introduced in this
paper. Notations not especially explained are used with their usual meanings.

2. The variational formulation

The variational formulation for Problem (I) is written as:
Problem (I∗) Find (u, p, T ) ∈ X ×M ×W , such that T |∂Ω = T0, satisfying{a(u, v)+ a1(u; u, v)− b(p, v) = λ(jT , v), ∀ v ∈ X,

b(q, u) = 0, ∀ q ∈ M,
d(T , ϕ)+ λā1(u; T , ϕ) = 0, ∀ ϕ ∈ W0,

(2.1)

where

X = H10 (Ω)
2, M = L20(Ω) =

{
q, q ∈ L2(Ω),

∫
Ω

qdx = 0
}
, W = H1(Ω), W0 = H10 (Ω),

(·, ·) means the inner product in L2(Ω)2 or in L2(Ω) according to the context, a(u, v) = ν(∇u,∇v), b(p, v) = (p, div v),
d(T , ϕ) = (∇T ,∇ϕ),

a1(u; v,w) =
1
2

∫
Ω

2∑
i,j=1

(
ui
∂vj

∂xi
wj − ui

∂wj

∂xi
vj
)
dx, (2.2)

and

ā1(u; T , ϕ) =
1
2

∫
Ω

2∑
i=1

(
ui
∂T
∂xi
ϕ − ui

∂ϕ

∂xi
T
)
dx. (2.3)

It has been shown in [18–21] that there exist positive constants Ci > 0 (i = 1, 2, 3) and C ′j > 0 (j = 1, 2) such that

‖v‖0 ≤ C1‖∇v‖0, ∀ v ∈ H10 (Ω)
2, ‖v‖0 ≤ C ′1‖∇v‖0, ∀ v ∈ H

1
0 (Ω), (2.4)

‖v‖0,4 ≤ C2‖∇v‖0, ∀ v ∈ H10 (Ω)
2, ‖v‖0,4 ≤ C ′2‖∇v‖0, ∀ v ∈ H

1(Ω), (2.5)

‖v‖0,4 ≤ C3‖∇v‖0, ∀ v ∈ H1(Ω)2. (2.6)



Download English Version:

https://daneshyari.com/en/article/841912

Download Persian Version:

https://daneshyari.com/article/841912

Daneshyari.com

https://daneshyari.com/en/article/841912
https://daneshyari.com/article/841912
https://daneshyari.com

