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a b s t r a c t

This paper deals with planar quasi-homogeneous polynomial vector fields, and addresses
three major questions: the monodromy, the center–focus and the integrability problems.
We characterize themonodromic planar quasi-homogeneous polynomial vector fields, and
wegive a condition to distinguish between a center and a focus in this case. Also,weprovide
conditionswhich characterize the integrability of quasi-homogeneous polynomial systems
under non-resonance conditions. The results obtained allowus to analyse twomonodromic
planar systems with degenerate linear part: one of them with nilpotent linearization, and
another one with null linear part.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear ordinary differential equations appear in many branches of applied sciences. In the context of planar systems,
one of the basic questions is themonodromyproblem,which concerns determining if the Poincaré first returnmap is defined
for an equilibrium point. When this occurs the singular point is called monodromic and, in the analytic case, it is either a
center or a focus.
Once themonodromyhas been established, the classical Poincaré’s center–focus problem looks for conditions that decide

if amonodromic equilibrium is a center or a focus. In other words, one determineswhen all the orbits around an equilibrium
point are closed, at least in a small neighborhood.
In such a case, the integrability problem arises: one determines if the planar vector field has a first integral, that is,

a function which remains constant along the trajectories of the system. In a general framework, the integrability is an
important question because the existence of a first integral completely determines its phase portrait.
It is well known that the presence of an analytic center assures the existence of local C∞ first integrals (see Mazzi and

Sabatini [1]). In general, it is not possible to assure the existence of local analytic first integrals, unless we restrict to a
punctured neighborhood of the equilibrium (see Li et al. [2]).
In the nondegenerate case (that is,when the linear part of the equilibrium is equivalent to (−y, x)T), the Poincaré Theorem

states that there is a center in an analytic planar system if and only if there are analytic first integrals.
In the degenerate situation, there are two situations to be considered: the nilpotent and the zero linear part cases.
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In the nilpotent case, there are analytic systemswith centers which do not admit analytic first integrals (seeMoussu [3]).
The theoretical characterization of centers and analytic first integrals for analytic nilpotent systems can be found in Strózyna
and Zoladek [4].
For the second case, corresponding to equilibria with zero linear part, only naive analyses have been carried out. The

ideas presented in this paper should contribute to a deeper understanding of this case. In fact, some of our examples are
devoted to this situation.
The subject of this paper is the analysis of themonodromy, center–focus and integrability problems for a concrete family

of planar differential equations: those related to quasi-homogeneous (also called weighted-homogeneous) vector fields.
The quasi-homogeneity plays an important role in the study of the topological determination of a system (see Bruno [5],

Brunella–Miari [6]). Namely, any vector field can be expanded in quasi-homogeneous terms of an arbitrary type. If a quasi-
homogeneous term of the principal part is topologically determining for some specific type, then the full vector field is
topologically equivalent to that term.
The quasi-homogeneity is also meaningful in the analysis of the monodromy problem (see Medvedeva [7]), as well as

other areas of the dynamical systems theory. For instance, Algaba et al. [8] considered the normal form technique from
a quasi-homogeneous perspective; Mañosa [9] gives conditions for a focus in degenerate monodromic systems having
characteristic directions.
We can say that the use of quasi-homogeneity in the different techniques for the analysis of dynamical systems (blow-

up, normal forms, Poincaré maps, etc.) is theoretically and computationally analogous to the homogeneous case, but the
quasi-homogeneous framework is dynamically meaningful.
This paper is arranged in four sections. In the rest of the present section we establish some basic notations and give a

way to split a quasi-homogeneous planar vector field as the sum of one with zero-divergence and another one with the
divergence of the original vector field.
This splitting is used in Section 2 to describe the phase portraits of quasi-homogeneous planar systems. This is done in

Proposition 2.6, where we characterize the quasi-homogeneous vector fields which have monodromy.
Later, in Section 3, assuming that we deal with a monodromic quasi-homogeneous system, we give in Theorem 3.7 a

condition to distinguish between a center and a focus, which depends on the vanishing of a coefficient. Also, simple formulas
to obtain the quoted coefficient are given in the simplest cases. The results in this section generalize those presented in
Collins [10].
Finally, in Section 4 we provide conditions on a quasi-homogeneous vector field in order to have a formal or analytic

first integral. To this end, we use again the splitting derived below. The main result is stated in Theorem 4.13, which
characterizes the integrability of quasi-homogeneous systems under non-resonance conditions, providing also the structure
of first integrals. Section 4 is completed with the analysis of two monodromic planar systems with degenerate linear part:
one with nilpotent linearization, and other with null linear part.

1.1. Preliminary notations

Let us consider a planar system of the form

dx
dt
= F(x), with x = (x, y)T ∈ R2, (1.1)

where F = (P,Q )T is a quasi-homogeneous (or weighted-homogeneous) vector field of type (or weigh) t = (t1, t2) ∈ N×N
and degree r ∈ Z (N is the set of natural numbers, not including zero; instead Z+ will denote the set of non-negative
integers). Throughout this paper, we will assume that t1, t2 have no common factors (this can always be achieved by
canceling them if they exist) and also that t1 ≤ t2 (otherwise, it is enough to interchange x↔ y).
Recall that a scalar polynomial p : R2 −→ R is quasi-homogeneous of type t and degree k if p(εt1x, εt2y) = εkp(x, y) for

all ε ∈ R. The set of scalar quasi-homogeneous polynomials of type t and degree kwill be denoted by Pt
k.

The vector field F : R2 −→ R2 is called quasi-homogeneous of type t and degree r if its components P , Q are quasi-
homogeneous polynomials of type twith degrees r + t1, r + t2 respectively. The set of quasi-homogeneous vector fields of
type t and degree r will be denoted byQt

r .
There is a simple way to visualize quasi-homogeneous monomials, by drawing the Newton diagram (see Bruno [5], Du-

mortier [11]). As pointed out in Fig. 1, each point into the lattice Z+×Z+ is put in correspondence with quasi-homogeneous
monomials, in both cases: scalar and vectorial. The points lying in the straightlines perpendicular to t determine the mono-
mials having the same quasi-homogeneous degree.
There are a number of standard definitions that we will use in the following:

• If t = (t1, t2), then its modulus is defined as |t| = t1 + t2.

• For a scalar function f (x, y), we denote by Xf =
(
−
∂ f
∂y ,

∂ f
∂x

)T
the Hamiltonian vector field with Hamiltonian f .

• The divergence of a vector field F = (P,Q )T is div(F) = ∂P
∂x +

∂Q
∂y .

• The wedge product of two vector fields F = (P,Q )T,G = (P̃, Q̃ )T is F ∧ G = PQ̃ − Q P̃ . Observe that F ∧ Xf = F · ∇f .
• The Poisson bracket of two scalar functions p, q is {p, q} = − ∂q

∂y
∂p
∂x +

∂q
∂x
∂p
∂y . Notice that {p, q} = ∇q ∧ ∇p = Xq ∧ Xp.
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