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a b s t r a c t

This paper first obtains the differentiability properties of the solutions for nonlinear
fractional differential equations, and then the sufficient conditions for the local
asymptotical stability of nonlinear fractional differential equations are also derived.
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1. Introduction

Fractional calculus is an area having a long history whose infancy dates back to three hundred years, the beginnings of
classical calculus. It had always attracted the interest of many famous ancientmathematicians, including L’Hospital, Leibniz,
Liouville, Riemann, Grünward, and Letnikov [1,2]. As the ancient mathematicians expected, in recent decades, fractional
differential equations have been found to be a powerful tool in more andmore fields, such as materials, physics, mechanics,
and engineering [3–9,1,2,10].
Fractional differential operators are one kind of pseudo-differential operators. Since they are nonlocal and have weakly

singular kernels, the study of fractional differential equations seems to be more difficult and less theories have been
established than for classical differential equations. First, this paper studies the smoothness properties of the solutions for
nonlinear fractional differential equations (FDEs). Not only the analytical properties of FDEs, but also, more important, the
knowledge of the smoothness properties is indispensable for the construction of good numerical schemes [11–15]. This
proves that, in general, the differentiability properties of the solutions for FDEs at initial points are different from other
points. Thanks to these results, it is surprisingly found that it is hard for autonomous/nonautonomous FDEs to have periodic
solutions besides fixed points, which are quite distinct from classical ODEs. On the other hand, it appears to be natural if one
understands this phenomena from a physical point of view; the possible periodicity of the solutions for FDEs are destroyed
by thememory effects of fractional differential operators [4]. It is well known that stability issue is a key topic for application
sciences. The necessary and sufficient stability conditions for linear FDEs and linear time-delayed FDEs have already been
obtained in [16,17,8]. To the best of our knowledge, the stability of nonlinear FDEs is still ‘‘open’’, although this is a very hot
and urgent topic for engineers, physicists, controllers, and pure mathematicians. Many of the scientists are expecting the
fractional version of the classical Hartman–Grobman theorem for hyperbolic dynamical systems of order 1 [5]. This paper
provides the sufficient stability conditions for nonlinear FDEs.
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The definition of fractional integral is described by

aD
−β
t x(t) =

1
Γ (β)

∫ t

a
(t − τ)β−1x(τ )dτ , β > 0.

There are three kinds of widely used fractional derivatives, namely the Grünwald–Letnikov derivative, the Rie-
mann–Liouville derivative, and the Caputo derivative. The Grünwald–Letnikov derivative and the Riemann–Liouville deriva-
tive are equivalent if the functions they act on are sufficiently smooth, and the Riemann–Liouville derivative is meaningful
under weaker smoothness requirements. So just the definitions of the Riemann–Liouville derivative and the Caputo deriva-
tive are introduced as follows: the Riemann–Liouville derivative

aD
q
t x(t) = D

m
aD
q−m
t x(t), q ∈ [m− 1, m),

and the Caputo derivative
C
aD
q
t x(t) = aD

q−m
t Dmx(t), q ∈ (m− 1, m),

wherem ∈ Z+, Dm is the classicalm-order derivative.
For the Riemann–Liouville derivative, we have

lim
q→(m−1)+

aD
q
t x(t) =

dm−1x(t)
dtm−1

and

lim
q→m−

aD
q
t x(t) =

dmx(t)
dtm

.

But for the Caputo derivative, we have

lim
q→(m−1)+

C
aD
q
t x(t) =

dm−1x(t)
dtm

− D(m−1)x(a)

and

lim
q→m−

C
aD
q
t x(t) =

dmx(t)
dtm

.

Obviously, aD
q
t (q ∈ (−∞, +∞)) varies continuously with q, i.e., aD

q
t (q ∈ (−∞, +∞)) bridges all the gaps among the

integer derivatives and the integer integrals, but the Caputo derivative cannot do this [18]. However, the Caputo derivative
is extensively used in real applications because the initial conditions of FDEs with Caputo derivative have a clear physical
meaning [6,13].
This introduction is closed by outlining the rest of the paper. In the next section, some preliminary lemmas are

first provided and then the smoothness of the solutions for nonlinear FDEs with the Caputo derivative and with the
Riemann–Liouville derivative are discussed. The theoremon sufficient stability conditions of nonlinear FDEswith the Caputo
derivative is proved in Section 3.

2. Smoothness of nonlinear FDEs

The FDE with the Caputo derivative is given as{
C
aD
q
t x(t) = f (t, x(t)), m− 1 < q < m ∈ Z+,

Dkx(a) = xka, k = 0, 1, . . . ,m− 1,
(1)

and the FDE with Riemann–Liouville derivative is provided byaD
q
t x(t) = f (t, x(t)), m− 1 < q < m ∈ Z+,[
aD
q−k
t x(t)

]
t=a
= xka, k = 1, 2, . . . ,m.

(2)

2.1. Preliminary lemmas

The FDEs (1) and (2) can be converted to their equivalent Volterra integral equations of the second kind under some
natural conditions.

Lemma 2.1 ([19]). If the function f (t, x) is continuous, then the initial value problem (1) is equivalent to the following nonlinear
Volterra integral equation of the second kind,

x(t) =
m−1∑
k=0

xka
k!
(t − a)k +

1
Γ (q)

∫ t

a
(t − τ)q−1f (τ , x(τ ))dτ , (3)

and its solutions are continuous.
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