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a b s t r a c t

This paper is concerned with two-fluid time-dependent non-isentropic Euler–Maxwell
equations in a torus for plasmas or semiconductors. By using the method of formal
asymptotic expansions,we analyze the non-relativistic limit for periodic problemswith the
prepared initial data. It is shown that the small parameter problems have unique solutions
existing in the finite time interval where the corresponding limit problems (compressible
Euler–Poisson equations) have smooth solutions. Moreover, the formal limit is rigorously
justified by an iterative scheme and an analysis of asymptotic expansions up to any order.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

We investigate the non-relativistic limit problem for the (rescaled) two-fluid Euler–Maxwell (TEM) systems which takes
the form [1–4]

∂tnα + div (nαuα) = 0, (1.1)

∂t(nαuα)+ div (nαuα ⊗ uα)+∇pα(nα) = qαnα(E + γ uα × B)−
nαuα
τα

, (1.2)

λ2∂tE −
1
γ
∇ × B = −(qiniui + qeneue), ∂tB+

1
γ
∇ × E = 0, (1.3)

λ2div E = ni − ne, div B = 0, (1.4)

where the index α = e, i and (x, t) ∈ T 3 × [0, T ]. Here, ne, ue (respectively, ni, ui) denote the scaled density and mean
velocity vector of the electrons (respectively, ions) and E, B the scaled electric field and magnetic field. They are functions
of a three-dimensional position vector x ∈ T 3 and of the time t > 0, where T 3 = ( R

2πZ )
3 is the three-dimensional torus.

The fields E and B are coupled to the particles through the Maxwell equations and act on the particles via the Lorentz force
E + γ uα × B. qe = −1 and qi = 1. uα ⊗ uα stands for the tensor product uα,juα,k for j, k = 1, 2, 3. In the system (1.1)–(1.4),
ni−ne = qini+qene and qiniui+qeneue stand for the free charge and current densities for the particle respectively. Equations
(1.1)–(1.2) are the mass and momentum balance laws respectively, while (1.3)–(1.4) are the Maxwell equations. Here the
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energy equations are replaced by the state equations of pressures pα = pα(nα)(α = e, i)which are supposed to be smooth
and strictly increasing for nα > 0. i.e., the pressure functions are regular functions satisfying

p ∈ C s(0,∞), p′α(nα) > 0 for all nα > 0, (1.5)

with s > 3
2 + 1. Therefore, this model is isentropic.

Physically, τα stands for the momentum relaxation time, λ stands for the scaled Debye length, γ can be chosen to be
proportional 1c , where c is the speed of light. These parameters can be chosen independently on each other according to the
desired scaling and are small compared to the characteristic length of physical interest. Thus, regarding τα , λ and γ as sin-
gular perturbation parameters, we can study the limits problem in the system (1.1)–(1.4) as these parameters tend to zero.
The limit λ→ 0 leads to ni = ne, which is the quasi-neutrality of the plasma. Hence, λ→ 0 is called the quasi-neutral limit.
Also, τα → 0 and γ → 0 are physically called the zero-relaxation limit and the non-relativistic limit, respectively. Indeed,
we know that the phenomenon of non-relativistic is important in many physical situation involving various nonequilib-
rium process. For example, important examples occur in inviscid radiation hydrodynamics [5], in quantum mechanics [6],
Klein–Gordon–Maxwell system [7], and so on.
The Euler–Maxwell equations are more intricate than the Euler–Poisson equations, because of the complicated coupling

of the Lorentz force. So there have been less studies on the Euler–Maxwell equations and their asymptotic analysis than the
study on the Euler–Poisson equations. See [8–18] and the references therein. The first rigorously study of the Euler–Maxwell
equations with extra relaxation terms is due to Chen et al. [19], where a global existence result to weak solutions in one-
dimensional case is establishedby the fractional stepGodunov scheme togetherwith a compensated compactness argument.
A local smooth solution theory for the Cauchy problem of compressible Hydrodynamic-Maxwell systems is established by
J.W. Jerome (Ref. [4]) via a modification of the classical semigroup-resolvent approach of Kato. Paper [20] has just been
studied for the convergence of one-fluid isentropic Euler–Maxwell system to compressible Euler–Poisson system via the
non-relativistic limit. Peng andWang [20] also prove that the combined non-relativistic and quasi-neutral limit γ = λ2 → 0
is the (one-fluid) incompressible Euler equations [21]. The justification of these limits is rigorous for smooth periodic
solutions in time intervals independent of the parameters γ and λ. Recently, the two-fluid Euler–Maxwell equations are
investigated in [22], where the formal asymptotic analysis is performed to derive a hierarchy of models for plasmas. Due to
the two-fluid influence, in this present paper, we need to consider the interactions between electrons density ne and ions
density ni through theMaxwell equations (1.3). Because of these effects, some key estimates in [20] have to be reconsidered,
and our analysis depends heavily on the special nonlinear structure of the isentropic Euler–Maxwell models.
The aim of this article is to study the non-relativistic limit γ → 0 by the method of asymptotic expansions in [20] and

the theory in [23] to the periodic problem for the two-fluid Euler–Maxwell equations. In the case that the problems are
confined in a torus, we prove the existence of smooth solutions to the problem (1.1)–(3.3) and their convergence to the so-
lutions of the two-fluid compressible Euler–Poisson equations in a time interval independent of γ . That is, when γ is small,
the solutions of two-fluid Euler–Maxwell equations and corresponding Euler–Poisson are similar. Then, we can use a Euler–
Maxwell system to approximate a Euler–Poisson system. For this propose, we use the method of asymptotic expansions
constructed by solving the two-fluid compressible Euler–Poisson equations and a linear curl–div system. The convergence
of the expansions is achieved through the energy estimates for error equations derived from the asymptotic expansions
and the Euler–Maxwell equations. Here we have to deal with some coupling and singular terms. For the variables nα and
uα(α = e, i), we adapt the techniques of Majda [24] for symmetrizable hyperbolic equations. For the fields E and B we
observe that from the Maxwell equations (1.3) E and B satisfy the relation

d
dt

∫
T 3
(λ2|E|2 + |B|2)dx =

∫
T 3
(neue − niui) · Edx (1.6)

to obtain uniform energy estimates for E and Bwith respect to x.
This paper is organized as follows. In the next section, we give some notations and basic lemmas; In Section 3, we derive

formal asymptotic expansions of the problem (1.1)–(1.4) and prove the existence of the expansions. Section 4 is devoted to
justify the asymptotic expansions up to any order under the condition that the initial expansions are well prepared.

2. Notations and basic lemmas

In the following, we denote by C various generic constants independent of γ , which can be different from one line to
another one. L2(T 3) is the space of square integral functions on T 3 with the norm ‖ · ‖ or ‖ · ‖L2(T 3). For a nonnegative
integer s, Hs(T 3) denotes the usual Sobolev space of function f satisfying ∂βx f ∈ L2(T 3)(0 ≤ |β| ≤ s)with norm

‖f ‖s =
√ ∑
0≤|β|≤s

‖Dβ f ‖2, (2.1)

here and after β ∈ N3, Dβ = ∂
β
x = ∂

β1
x1 ∂

β2
x2 ∂

β3
x3 for |β| = β1 + β2 + β3. Especially ‖ · ‖0 = ‖ · ‖. Let B be a Banach

space, Ck([0, T ];B) denotes the space ofB-valued k-times continuously differentiable functions on [0, T ]. We can extend
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