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ARTICLE INFO ABSTRACT

Arfidf—’ history: We prove that every bound state of the nonlinear Schrédinger equation (NLS) with Morse

ii:"’;‘é éso]?tirggré%%% index equal to two, with % (E(¢o) + ©Q(¢)) > 0, is orbitally unstable. We apply this
P result to two particular cases. One is the NLS equation with potential and the other is a

Keywords: system of three coupled NLS equations. In both the cases the linear instability is well known

but the orbital instability results are new when the spatial dimension is high.
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1. Introduction

In this paper, we consider the instability of bound states of the nonlinear Schrédinger equation:

i0u = —Au+fx [u®)u, (xt)eR"", (M
where f(x,s) € C'(RY x Ry;R) and [,y [F(x, [u|*)|dx < oo for every u € H'(RY). Here, we put Ry = [0, o0) and

F(x,s) = fosf(x, 7)dr.

The nonlinear Schrédinger equation (1) arises in various physical contexts such as Bose-Einstein condensation, plasma
physics and nonlinear optics (see e.g., [11,12,15]). By a bound state, we mean a nontrivial solution of (1) of the form
u(x, t) = e'®¢,(x), where w € R and ¢,, is the solution of

— Adoy + 0Py + f (%, |0*)p0 = 0. (2)

Since one can only observe the stable bound states in physical phenomena, it is important to investigate the stability of the
bound states.
We define the energy E and the charge Q on H!(RV) by

1 2 1 2
E(u) .= - [Vul“dx + = F(x, |ul®) dx,
2 Jgn 2 Jgn

1 2
Q) = f/ |ul© dx.
2 RN

These quantities are formally conserved by the flow of (1).

Now, let ©(N) be the orthogonal group in RV. Let G C ©(N) be a subgroup, such that the nonlinearity f(x, s) of (1) is
invariant under G, i.e., f(gx,s) = f(x, s) forevery g € G,x € R and s > 0. We define a closed subspace HZ(R") of H (RV)
by

H{®RY) = {u e H'®RY)| u(gx) = u(x), g € G, x e R"}. 3)
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We note that HA(RY) = H'(RV) if G = {Id (identity matrix)}, and H}:(RY) = H!(RY) if G = O(N), where H!(R") =
{ue H'®M) u(x) = u(x]), x € RN}. Let (-, -) and (-, -) be defined as

(u, v) == Re/ Vu 'de—i-Re/ uv dx,
RN RN

(u, v) :== Re/ uv dx.
RN

We regard Hé (R) as a real Hilbert space equipped with the inner product (-, -). We further define the norms || - |41, || - Il;2
as

2 . 2 .
lully == @, w),  lull = (u,u).

We assume the local well-posedness of the Cauchy problem for (1) in Hé (RM), and that the energy and the charge are
conserved during the interval of existence.

Assumption 1 (Existence of Solutions). For every u > 0, there exists t; > 0 such that for every uy, € Hé(RN ) with
lluolly1 < w, there exists a solution u € C([0, tp); H.(RV)) of (1) such that

(@) u(x, 0) = up(x) forx € RV,

(b) E(u(t)) = E(uo), Qu(t)) = Q(up) fort € 4 =[O0, to).

We also assume the existence of bound states.

Assumption 2 (Existence of Bound States). There exist w1, w, € R with w; < w, and a C! mapping (w1, @) 3 @ — ¢, €
HL(RN) \ {0} such that ¢, satisfies (2). Further, f (x, |¢,[%), 3sf (X, |¢0|?) |Pw|® € L.

Definition 1 (Orbital Stability). We say that the bound state et ¢,, is orbitally stable in H(‘; (RN) if for all ¢ > O there exists

& > Osuchthatforalluy € Hé (RN) with [lup — ¢ |y < 8, the solution u of (1) with the initial data u(0) = ug exists globally
in time and satisfies

sup inf [|u(t) — e¥¢, |1 < &. (4)
te(0,00) SER

Otherwise, we say the bound state ‘¢, is orbitally unstable in H}(RN).

The stationary problem (2) has a variational structure. That is, ¢, € H!(RV) is a solution of (2) if and only if ¢,, is a critical
point of the action S,,, where

Sw(u) = E(u) + 0Q ().
The Morse index of a critical point ¢, of S, is the space dimension of the space which is spanned by the eigenvectors of the

negative eigenvalues of S/ (¢,,), where S/ (¢,,) is the second Fréchet derivative at ¢,, of S,,. Here, by a direct calculation, we
have

S (@)t = — Al + ot + f(X, g0t + 20 (X, ¢, | ) Re(P0 1) o (5)

We note that S (¢,,) is a self-adjoint operator on the real Hilbert space L2(RN).

The ground states are the bound states which minimize S, among all the bound states. The excited states are the bound
states which are not the ground states. In many situations, the Morse index of the ground states is 1 and the Morse index of
the excited states is more than 1. There are many results for the stability and instability of the ground states of the nonlinear
Schrodinger equation (1). When f (x, s) = —s%, for 0 < o < 2/N, the ground states are stable [2] and for 2/N < o < «(N),
the ground states are unstable [1,16]. Here, we put «(N) = cofor N = 1,2 and «(N) = 2/(N — 2) for N > 3. In more

general setting, for the case when Morse index is 1, Grillakis, Shatah and Strauss [8] have proved by an abstract theory that
if %(Sw(qﬁw)) > 0 (resp. < 0), then e'®¢,, is orbitally stable (resp. unstable). For the proof of the instability, they use the
fact that on the hypersurface {u € Hé| Q) = Q(¢w) } there is exactly one direction in which the energy decreases.

We now introduce another kind of instability. Let el (¢, + p) be the solution of (1). Then p satisfies

dp = Lp + 8y, (X, p),
where
£p = —iS)($,)p,
2, X, 0) = —if (%, |0 + 01 (D0 + ) + I (X, |90 P0 + if (%, |0 |*) p + 210 (%, |0 |*)Re(B0D) b
We say the bound state !¢, is linearly unstable if the linearized operator .£ has an eigenvalue with positive real part.

In [9], it is shown that if the Morse index is even (resp. odd) and ;—zz(sw(q&w)) > 0 (resp. < 0), then the bound state !¢,
is linearly unstable. In addition, it is shown that the orbital instablﬁty follows from the linear instability and the estimate

lgs, %, P)llgt < Cllplli*, o> 0. (6)
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