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a b s t r a c t

In this paper, new oscillation theorems for the damped partial differential equation (PDE)
with p-Laplacian

div(A(x)‖∇u‖p−2∇u)+ 〈Eb(x), ‖∇u‖p−2∇u 〉 + c(x)|u|p−2u = 0

are established in unbounded domains. Our theorems as two special cases when A ≡ I
or A ≡ I, Eb(x) ≡ 0 improve and complement some existing results in the literature. To
illustrate our main results, we give some corollaries and examples.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the damped partial differential equation (PDE) with p-Laplacian

div(A(x)‖∇u‖p−2∇u)+ 〈 Eb(x), ‖∇u‖p−2∇u 〉 + c(x)|u|p−2u = 0, (1.1)

where p > 1, x = (xi)Ni=1 ∈ Ω(1) := {x ∈ RN : ‖x‖ ≥ 1} ⊂ RN , ‖·‖ is the usual Euclidean norm inRN and∇ = (∂/∂xi)Ni=1 is
the usual nabla operator.A(x) = (aij(x)) is an ellipticN×Nmatrixwith differentiable components, c(x) and Eb(x) = (bi(x))Ni=1
are Hölder continuous function inΩ(1).
A solution of Eq. (1.1) in Ω(1) we understand a differentiable function u = u(x) such that A(x)‖∇u‖p−2∇u is also

differentiable and u satisfies Eq. (1.1) in Ω(1). Regarding the question of existence of the solutions of Eq. (1.1), we refer
the reader to the monograph [1]. Eq. (1.1) is important for applications in physics, biology, glaciology, etc.;see [1,2].
Eq. (1.1) includes the following equations extensively studied in the literature.
(1) The linear Schrödinger partial differential equation

∆u+ c(x)u = 0. (1.2)

(2) The undamped PDE with p-Laplacian

div(‖∇u‖p−2∇u)+ c(x)|u|p−2u = 0. (1.3)

(3) The damped PDE with p-Laplacian

div(‖∇u‖p−2∇u)+ 〈Eb(x), ‖∇u‖p−2∇u〉 + c(x)|u|p−2u = 0. (1.4)
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The oscillation theory of Eq. (1.2) deals with two types of oscillation. According to this theory, Eq. (1.2) is said to beweakly
oscillatory if every solution has a zero outside of every ball inRN and strongly oscillatory if every solution has a nodal domain
outside of every ball in RN . The equivalence between these two types of oscillation for Eq. (1.2) has been proved in [3] for
the local Hölder continuous function c(x), which is a usual assumption concerning the smoothness of the function c(x); see
also [4] for short discussion concerning the general situation p 6= 2. In the connection to Eq. (1.1) we will use the following
concepts of oscillation; see [2,5,6].

Definition 1.1. The function u defined inΩ(1) is said to be oscillatory, if the set of zeros of the function u is unboundedwith
respect to the norm. Eq. (1.1) is said to be oscillatory if every solution defined inΩ(1) is oscillatory.

Definition 1.2. LetΩ be an unbounded domain in RN . The function u defined inΩ(1) is said to be oscillatory inΩ , if the set
of zeros of the function u, which lies in the closureΩ , is unboundedwith respect to the norm. Eq. (1.1) is said to be oscillatory
inΩ if every solution defined onΩ(1) is oscillatory inΩ . The equation is said to be nonoscillatory (nonoscillatory inΩ) if
it is not oscillatory (oscillatory inΩ).

Since the pioneering work of Noussair and Swanson [7], there have been extensive investigations on oscillation (by
Definition 1.1) for Eqs. (1.1)–(1.4); see, for example [2,4,8–17]. However, to the best of our knowledge, very little is known
about the oscillation of Eqs. (1.1)–(1.4) on another type of unbounded domain, than an exterior of a ball. Here, we would
like to mention the recent work of Mařík [5], in which Philos-type oscillation criteria [18] for different type of unbounded
domains were derived for Eq. (1.3). Furthermore, in the paper of Mařík [6], Wintner-type oscillation theorem [19] as well
as Philos-type oscillation criteria are established for Eq. (1.4) in unbounded domains. However, we have found that the
Philos-type oscillation theorem has not been well developed for Eqs. (1.3) and (1.4) in [5,6]; see Remark 4.1.
The purpose of this paper is to establish new oscillation theorems for Eq. (1.1) in unbounded domains. By using the

Riccati technique [7] and the modified integral averaging technique [20–22], we try to extend the results in [18,19] to Eq.
(1.1), which improve and complement the main results in [5,6]. The criteria can detect also the oscillation over the more
general exterior domains, then the exterior of some ball. The main feature in our results is that the oscillation criteria are
not radially symmetric and do not depend on the mean value of the coefficients. To illustrate our results, we give a series of
corollaries and examples.

2. Preliminaries

For simplicity, let

Ω(a) = {x ∈ RN : ‖x‖ ≥ a},
Ω(a, b) = {x ∈ RN : a ≤ ‖x‖ ≤ b},
S(a) = {x ∈ RN : ‖x‖ = a}.

LetΩ be an unbounded domain in RN and a0 ≥ 1. Define

D = {(t, x) ∈ R×Ω ∩Ω(a0) : a0 ≤ ‖x‖ ≤ t},
D0 = {(t, x) ∈ R×Ω ∩Ω(a0) : a0 ≤ ‖x‖ < t}.

Let the function H ∈ C(D,R+0 ) ∩ C1(D0,R+0 ) satisfy the following conditions.

(H1) H(t, x) ≡ 0 for x 6∈ Ω;
(H2) if x ∈ Ω0, then H(t, x) = 0 if and only if t = ‖x‖;
(H3) there exists a function κ ∈ C([a0,∞),R+) such that

K(t, r) := κ(r)
∫
Ω∩S(r)

H(t, x)dσ

is positive and has a nonpositive continuous partial derivative ∂K(t, r)/∂r on D0 for every fixed t > r;
(H4) it holds

0 < inf
s≥a0

[
lim inf
r→∞

K(r, s)
K(r, a0)

]
≤ ∞,

whereΩ denotes the closure ofΩ , dσ is the element of the surface of the sphere S(r).
For later use, we introduce some notations. For a0 ≥ 1, β ≥ 1, ρ ∈ C1(Ω(a0),R+) and H ∈ C(D,R+0 ) ∩ C1(D0,R+0 ).

Define

l(x) = ρ(x)λmin(x)λ−qmax(x),

g(x) = ρ(x)λ1−pmin (x)λ
p
max(x),
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