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a b s t r a c t

The main goal of this paper is to study the asymptotic expansion near the boundary of the
large solutions of the equation

−∆u+ λum = f in Ω,

where λ > 0,m > 1, f ∈ C(Ω), f ≥ 0, and Ω is an open bounded set of RN, N > 1,
with boundary smooth enough. Roughly speaking, we show that the number of explosive
terms in the asymptotic boundary expansion of the solution is finite, but it goes to infinity
asm goes to 1. We prove that the expansion consists in two eventual geometrical and non-
geometrical parts separated by a term independent on the geometry of ∂Ω , but dependent
on the diffusion. For low explosive sources the non-geometrical part does not exist; all
coefficients depend on the diffusion and the geometry of the domain by means of well-
known properties of the distance function dist(x, ∂Ω). For high explosive sources the
preliminary coefficients, relative to the non-geometrical part, are independent on Ω and
the diffusion. Finally, the geometrical part does not exist for very high explosive sources.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we are interested in the solutions of the equation

−∆u+ g(u) = f inΩ, (1)

with an explosive behavior on the boundary

u(x)→∞ as x→ ∂Ω. (2)

In general, the solutions of (1) and (2) are called large solutions if a Comparison Principle holds. This is because the inequality

u(x) ≥ v(x), x ∈ Ω,

is satisfied for any other solution v of (1) with bounded boundary values.
Singular boundary value problems as (1)–(2) have been extensively studied in the literature starting with the results of

L. Bieberbach and H. Rademacher for precise choices of the function g (see for instance [1–4]). From our point of view, the
pioneer works in the topic are due to Keller [5] and Osserman [6] on 1957 who proved the existence of large solutions of (1)

∗ Corresponding author.
E-mail addresses: salomon.alarcon@usm.cl (S. Alarcón), gdiaz@mat.ucm.es (G. Díaz), jrey@mat.ucm.es (J.M. Rey).

1 Deceased author.

0362-546X/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2009.10.040

http://www.elsevier.com/locate/na
http://www.elsevier.com/locate/na
mailto:salomon.alarcon@usm.cl
mailto:gdiaz@mat.ucm.es
mailto:jrey@mat.ucm.es
http://dx.doi.org/10.1016/j.na.2009.10.040


S. Alarcón et al. / Nonlinear Analysis 72 (2010) 2426–2443 2427

provided that f ≡ 0, g is a nondecreasing function andΩ is a bounded open set of RN,N > 1. They also establish necessary
and sufficient conditions to guarantee that the large solutions exist under the so called Keller–Osserman condition∫

∞ ds√∫ s
0 g(τ )dτ

< +∞. (3)

From that time forward an extensive literature has been produced (see again [1–4,7] and the references therein). In sight of
results in [3] or [7] about the existence and uniqueness of the classical large solutions of (1), we focus our attention on their
asymptotic behavior on the boundary ∂Ω .
As it is usual in studying properties near the boundary, the distance function dist(x, ∂Ω), here denoted by d(x), plays an

important role. As it is well known, if the boundary is bounded with ∂Ω ∈ Ck, k ≥ 1, one proves d(·) ∈ Ck in the parallel
strip near the boundary

Ωδ0 = {x ∈ Ω : 0 ≤ d(x) < δ0}. (4)

Obviously, the positive constant δ0 only depends on ∂Ω (see [2] or [8]). In particular, as it was proved in [3] if ∂Ω ∈ C2 then
the first term of the boundary explosive expansion is uniform and independent onΩ for the large solution of

−div(|∇u|p−2∇u)+ λum = f inΩ (1 < p <∞)

provided the condition m > p − 1 which is the extended version of (3). Other sharp properties on the uniform first term
of the expansion of the large solution of (1), for f ≡ 0, have been obtained by C. Bandle, G. Díaz, J. García Melián, A. Greco,
A. Lazer, S. Kim, N. Kondrat’ev, R. Letelier, J. López-Gómez, M. Marcus, J. Matero, P. McKenna, V. Nikishkin, M. del Pino, G.
Porru, J. Sabina and L. Véron among many other authors. We remit to [1] and [2] for some illustrations.
Certainly the geometric properties of the domain can appear in the asymptotic expansion near the boundary. Indeed

this influence occurs in secondary terms under more regularity assumptions on the boundary. It is obtained by considering
terms containing∆d(x) neglected in the leading coefficient of the expansion. We note the important property

∆d(x) = −(N− 1)H(x),

where H(x) denotes the mean curvature of ∂{y ∈ Ω : d(y) < d(x)} at x (see again [2] or [8]). The simplest geometry is
derived on balls, asΩ = BR(0), for which

∆d(x) = −
N− 1
|x|

, |x| < R.

The first contribution on this geometrical influence is due to M. del Pino and R. Letelier who proved in [9] that the large
solution of (1), for g(r) = rm, 1 < m < 3, ∂Ω ∈ C4,N > 1 and f ≡ 0, admits the expansion

u(x) =
(
2(m+ 1)
λ(m− 1)2

) 1
m−1 (

d(x)
)− 2

m−1

(
1−

(
(N− 1)H(x0)
m+ 3

+ o(1)
)
d(x)

)
, (5)

whereH(x0) is themean curvature of the boundary at the point x0 ∈ ∂Ω , given by d(x) = |x−x0|, and o(1)→ 0 as d(x)→ 0.
More recently, C. Bandle andM.Marcus have extended the results of [9] by obtaining the dependence on themean curvature
of ∂Ω in the second order term of the asymptotic behavior of the large solution of (1), again if f ≡ 0 (see [2]).
As it was pointed out in the Abstract, the main goal of this paper is to study the whole asymptotic explosive expansion

near the boundary of the large solution of (1), here viewed as the source equation

−∆u+ λum = f inΩ (m > 1, f ≥ 0). (6)

As in [3], we will use a simple scheme characterized by means of the behavior

f (x) ≈ f0
(
d(x)

)−qτ as d(x)→ 0

with

ατ =
2+ τ
m− 1

and qτ = mατ , (τ is a non-negative integer),

for which the low explosive sources are given by τ = 0 and f0 ≥ 0 and the high explosive sources by τ > 0 and f0 > 0. We
note that large solutions for low explosive sources have been considered in the literature, mainly for null sources f ≡ 0
(see the above references). On the other hand, to the best of our knowledge only in [3, Theorem 3.8] large solutions for high
explosive sources have been studied.
So that, our main contribution is sketched as follows (see Theorem 1). Let us assume ∂Ω smooth enough and f ∈

C(Ω), f ≥ 0, verifying

f (x) =
(
d(x)

)−qτ(f0 + Mτ∑
n=1

fn
(
d(x)

)n)
, x ∈ Ωδ0 ,
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