FISEVIER

Contents lists available at ScienceDirect

Journal of Microbiological Methods

journal homepage: www.elsevier.com/locate/jmicmeth

Comparison of a newly developed binary typing with ribotyping and multilocus sequence typing methods for *Clostridium difficile*

Zhirong Li^{a,b,1}, Xiaolei Liu^{a,1}, Jianhong Zhao^{a,b,*}, Kaiyue Xu^a, Tiantian Tian^a, Jing Yang^{a,b}, Cuixin Qiang^{a,b}, Dongyan Shi^a, Honglian Wei^a, Suju Sun^c, Qingqing Cui^a, Ruxin Li^a, Yanan Niu^{a,b}, Bixing Huang^{d,**}

- ^a The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang City, Hebei Province, China
- ^b Hebei Provincial Center for Clinical Laboratories, 215 Hepingxi Road, Shijiazhuang City, Hebei Province, China
- ^c Public Health College of Hebei Medical University, No. 361 Zhongshandong Road, Shijiazhuang City, Hebei Province, China
- d Public Health Virology Laboratory, Queensland Health Forensic and Scientific Services, 39 Kessels Road, Coopers Plains, Queensland 4108, Australia

ARTICLE INFO

ABSTRACT

Keywords: Clostridium difficile Binary typing Molecular typing method Clostridium difficile is the causative pathogen for antibiotic-related nosocomial diarrhea. For epidemiological study and identification of virulent clones, a new binary typing method was developed for *C. difficile* in this study. The usefulness of this newly developed optimized 10-loci binary typing method was compared with two widely used methods ribotyping and multilocus sequence typing (MLST) in 189 *C. difficile* samples. The binary typing, ribotyping and MLST typed the samples into 53 binary types (BTs), 26 ribotypes (RTs), and 33 MLST sequence types (STs), respectively. The typing ability of the binary method was better than that of either ribotyping or MLST expressed in Simpson Index (SI) at 0.937, 0.892 and 0.859, respectively. The ease of testing, portability and cost-effectiveness of the new binary typing would make it a useful typing alternative for outbreak investigations within healthcare facilities and epidemiological research.

1. Introduction

Clostridium difficile is the most commonly recognized cause of infectious nosocomial diarrhea (Simmerlein et al., 2016; Cohen et al., 2010). Illnesses associated with *C. difficile* range from mild diarrhea to pseudomembranous colitis and toxic megacolon (Maccioni et al., 2015; Tang and Stone, 2017; Moudgal and Sobel, 2012). To understand the spread of this pathogen and identify clones with increased virulence, several molecular typing methods such as pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), multilocus variable-number tandem-repeat analysis (MLVA), and amplified fragment length polymorphism (AFLP) have been developed to investigate *C. difficile* outbreaks (Tenover et al., 2011; Killgore et al., 2008; Huber et al., 2013; Griffiths et al., 2010; Bidet et al., 1999). However, the application of these typing methods for *C. difficile* has been hampered by some of their limitations: long turn-around time, high cost, low typeability, poor-reproducibility, difficulties in portability and data analysis.

Binary typing, a new typing technique used successfully to study the

epidemiology of *Campylobacter jejuni*, may provide a better typing solution for *C. difficile* (Cornelius et al., 2010; Price et al., 2006; Huang et al., 2013). This technique is based on the idea that every binary target (gene present in some strains but not in others) could divide strains into two different groups. Using an array of binary targets, a strain could be characterized with a binary profile (Huang et al., 2013). The typing capability of the binary typing method for *C. jejuni* has been compared with those of serotyping, PFGE, and MLST. The binary typing has showed advantages in turn-around time, simplicity, cost, discriminatory ability, and portability (Cornelius et al., 2010).

In view of finding a better typing method, we report here the development of a novel binary typing scheme for *C. difficile*. The usefulness of the binary typing was compared with two commonly used methods, PCR-ribotyping and MLST in *C. difficile* typing.

¹ These authors contributed equally to this work and should be considered co-first authors.

 $^{^* \} Correspondence \ to: \ J.-H. \ Zhao, \ The \ Second \ Hospital \ of \ Hebei \ Medical \ University, \ 215 \ Hepingxi \ Road, \ Shijiazhuang \ City, \ Hebei \ Province, \ China.$

^{**} Corresponding author.

E-mail addresses: zhaojh_2002@yahoo.com (J. Zhao), Ben.Huang@health.qld.gov.au (B. Huang).

Table 1
Primers used in optimized binary typing

			erase							ly	
Description	Hymothetical protein	Tetracycline resistance protein Tn5397	Ribosomal RNA adenine N-6-methyltransferase	23S ribosomal RNA	Membrane-associated metalloprotease	Hypothetical protein	Conserved hypothetical protein	Alternative RNA polymerase sigma factor	dtdp-4-Dehydrorhamnose reductase	Cytidine/deoxycytidylate deaminase family	
References	This ctudy	Collins et al., 2013; Spigaglia et al., 2005; Marchese et al., 1998	This study	This study	This study	This study	This study	Spigaglia et al., 2006	This study	This study	
Reverse primer $(5' \rightarrow 3')$	ひてることでいていていること	TTCCAACCATACAATCCTTG	TGCGTCTGACATCTATCTG	CCTGTTGTCCATCACCTAC	CCTGCTTCTCTATCGTA	TCCTATTACTGCGGACAATT	GAATGAAGAAGAAGCACAAG	CCITATTAACAGCTTGTCTAGAT	AGTGGTCTTKGAGCCTTAC	AATCCACGCACAATTTCAC	
Forward primer $(5' \rightarrow 3')$	CATACOACATACACATAC	TGGAATTGATTTATCAACGG	TGGAACATCTGTGGTATGG	GCTACGGCATCAGTAATGA	AGTCTCTGTTTGGATTGCTA	GTATGTGGACACTGATTACTG	TCCATATACAAGGGAATCCT	AAAAGCGATGCTATTATAGTCAAA	GGTGAGTGTTGGTATGA	ATATTCACGACAAGCACCA	
Binary loci. Binary genes selected (bp) Forward primer $(5' \rightarrow 3')$	CDB11 02275 (200)8	tetM (1080)	CD630_20070-1 (196)	23S_rRNA (223)	CDB11_02830 (449)	CDBI1_09860 (354)	CD630_31520 (173)	tcdR (300)	CDBI1_01190 (113)	CDBI1_03750 (237)	
Binary loci.	CDR1	CDB2	CDB3	CDB4	CDB5	CDB6	CDB7	CDB8	CDB9	CDB10	

^a The figure within parentheses is the amplified PCR product size.

2. Materials and methods

2.1. Identification of candidate binary loci based on C. difficile genome sequence alignment

Four fully sequenced *C. difficile* genomes of R20291 (NC_013316), QCD-63q42 (NZ_CM000637), QCD-76w55 (NZ_CM000661), and 630 (NC_009089) were chosen randomly and downloaded from the GenBank Genomes. The genome alignment software Mauve 2.3.1 was used to compare the genome sequence of *C. difficile* 630 with the other three genomes of R20291, QCD-63q42, and QCD-76w55 (Huang et al., 2013; Doerks et al., 2002). The genes present and absent in either two of the four 4 strains were identified to be potential binary genes (loci). A total of 50 candidate binary loci were firstly selected for further analysis.

With a considerable number of fully sequenced C. difficile genomes available in GenBank, an in silico assessment of the distribution and usefulness of the selected binary loci could be conducted. A group of 50 C. difficile complete genomes were randomly selected downloaded from the NCBI genome database for the initial analysis. Each of the selected candidate binary loci was searched in the 50 C. difficile sample set with BLASTn alignment. The presence of the binary locus in a C. difficile genome was recorded as "1", while the absence was recorded as "0" in an Excel file. The potential typing ability of these binary loci combination was measured using the Simpson's index (SI) described by Hunter and Gaston (1988). The SI of different binary loci combinations was calculated with the software Optimal Combination Finder (OCF) as described previously (Huang et al., 2013; Shao and Tu, 1995). The in silico assessment found that 28 binary loci were promising in C. difficile typing. Therefore, they were validated using collected *C. difficile* strains. An optimal binary combination was identified for future C. difficile typing.

2.2. C. difficile isolates

An ethical approval of the Institutional Review Board (IRB) was sought and granted from the Second Hospital of Hebei Medical University [Approval # 20101007, 2013L-18]. A written consent form was obtained from each of the participants and guardians of the children enrolled in this study.

In total, 189 C. difficile strains were used in this study, of which 8 were reference strains provided from Oxoid Ltd., Cambridge, UK (see Table 4). They were used as an unrelated sample set to assess the binary typing ability. The rest 181 strains were isolated from March 2010 to September 2014 from three cities in Hebei Province of China. A total of 54 strains were isolated from kindergartens (healthy children aged 1-8 years) in Cangzhou (25/54) and Xingtai (29/54) cities. The other 127 were from Shijiazhuang city. They included 63 strains from hospitalized children without diarrhea in the Second Hospital of Hebei Medical University, 25 strains from hospitalized children with diarrhea in the Children's Hospital of Hebei Province, 10 strains from hospitalized adult patients with diarrhea in the Forth Hospital of Hebei Medical University, and 29 from healthy adults in Shijiazhuang city including 28 community-dwelling people and 1 healthcare worker. These strains were identified as C. difficile using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and VITEK2 ANC card (bioMérieux, France). They were deposited in Hebei Provincial Bank for Medical Culture Collections (HBMCC).

2.3. DNA extraction

C. difficile strains were inoculated onto *Clostridium* difficile Moxalactam Norfloxacin (CDMN) agar and incubated for 48 h at 37 $^{\circ}$ C in an anaerobic chamber. DNA was extracted using a commercial kit (TIANamp Bacteria DNA kit, Beijing, China) per the manufacturer's instructions. Genomic DNA was stored at -80 $^{\circ}$ C until use.

Download English Version:

https://daneshyari.com/en/article/8420456

Download Persian Version:

https://daneshyari.com/article/8420456

<u>Daneshyari.com</u>