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1. Introduction

Recently, Holm and Staley [ 1] introduced the b-family PDEs that described the balance between convection and stretching
for small viscosity in the dynamics of one dimensional nonlinear wave in fluids

me+ umy + buym = emy, (1.1)
—— ——— ———
convection  stretching viscosity

where u = g * m denotes u(x) = f_oooo g(x — y)m(y)dy. The convolution relates velocity u to momentum density m by
integration against the kernel g (x).

When Eq. (1.1) is restricted to the peakon case g(x) = e~ X/ with length scale & and m = u — a?u, it may be expressed
solely in terms of the velocity u(x, t) as (see [1])

ur — azuxxt — & (Ugy — Ux) + (b + Duuy, = o? (Duxt + Ullyy), (1.2)

where b, @ and ¢ are arbitrary real constants. Holm and Staley studied the effects of the balance parameter b and kernel
g(x) of solitary wave structures and investigated their interactions analytically for ¢ = 0 and numerically for small viscosity
e # 0, of [1].

With ¢ = 0in Eq. (1.2), it becomes the usual b-equation

Uy — azum + (b+ Duuy, = o? (buylyy + Ullyyy). (1.3)

The b-equation (1.3) can be derived as the family of asymptotically equivalent shallow water wave equations that emerge
at quadratic order accuracy for any b # —1 by an appropriate Kodama transformation, of [2,3]. For the case b = —1, the
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corresponding Kodama transformation is singular and the asymptotic ordering is violated, of [2,3]. The solutions of the b-
equation (1.3) were studied numerically for various values of b in [1,4], where b was taken as a bifurcation parameter. The
KdV equation, the Camassa-Holm equation, and the Degasperis—-Procesi equation are the only three integrable equations
in the b-equation (1.3), which was shown in [5,6] by using Painleve analysis. The b-equation (1.3) admits peakon solutions
forany b € R, of [1,4,6]. The Cauchy problem for Eq. (1.3) with @ # 0 on the line has been discussed recently in [7]. The
local well-posedness for the b-equation, a precise blowup scenario, several blowup results and global existence result of
strong solutions, and the uniqueness and the existence of global weak solution to the b-equation on the line have been
proved in [7]. Recently, it was pointed out that the KdV equation and the Camassa-Holm equation could be relevant to the
modeling of tsunami waves in [8-11].

Ifa =0,b = 2ande = 0,thenEq.(1.2) becomes the well-known Korteweg-de Vries equation which describes the unidi-
rectional propagation of waves at the free surface of shallow water under the influence of gravity, of [ 12]. In this model u(t, x)
represents the wave height above a flat bottom, where x is proportional to the distance in the direction of propagation and
t is proportional to the elapsed time. The KdV equation is completely integrable and its solitary waves are solitons [13,14].
The Cauchy problem of the KdV equation has been the subject of a number of studies, and a satisfactory local or global
(in time) existence theory is now in hand (for example, see [15,16]). It is shown that the KdV equation is globally well-
posed for ug € H~' [16]. It is observed that the KdV equation does not accommodate wave breaking (by wave breaking we
understand that the wave remains bounded but its slope becomes unbounded in finite time [17]).

Forao = 1,b = 2 and ¢ = 0, Eq. (1.2) becomes the Camassa-Holm equation, modeling the unidirectional propagation
of shallow water waves over a flat bottom, where u(t, x) stands for the fluid velocity at time t in the spatial x direction
[12,18-21]. The Camassa-Holm equation is also a model for the propagation of axially symmetric waves in hyperelastic
rods [22,23]. It has a bi-Hamiltonian structure [24,25] and is completely integrable [18,26-30]. Its solitary waves are
peaked [31]. The peaked solitons are orbital stable [32]. The explicit interaction of the peaked solitons is given in [33].
The peakons capture a characteristic of the traveling waves of greatest height—exact traveling solutions of the governing
equations for water waves with a peak at their crest, of [34-36]. Simpler approximate shallow water models (like KdV) do
not present traveling wave solutions with this feature (see [17]).

The Cauchy problems of the Camassa-Holm equation have been studied extensively. It has been shown that this equation
is locally well-posed [37-41] for the initial data uy € H*(I) with s > 3/2, where I = R or I = R/Z. More interestingly, it
has global strong solutions [37,39,42,43] and also blow-up solutions in finite time [30,37,39,42-45]. On the other hand, it
has global weak solutions in H! of [39,46-51]. It is observed that if u is the solution of the Camassa-Holm equation with the
initial data uo in H(R), we have for all t > 0,

lu(t, Yo < V2 U, Mgie < V2 ol g -

In comparison with the KdV equation, the Camassa-Holm equation has two advantages. First, the Camassa-Holm
equation represents the next order in the asymptotic expansion for shallow water waves beyond the KdV equation [2,21].
Second, the Camassa-Holm equation admits peaked traveling waves, replicating a feature that is characteristic for waves of
great height—waves of largest amplitude that are exact solutions of governing equations for water waves [34-36]. Moreover,
these solutions are orbital stable—that is, their shape is stable under small perturbations and therefore these waves are
recognizable physically [32,52,53]. The stability holds for the Camassa-Holm equation but not for the solutions of the
governing equations, as water waves are due to the small-amplitude shallow water regime in which this is the valid model
of [54]. It is worth pointing out that the equation models breaking waves [31,44]. The smooth solutions of the Camassa-Holm
equation have an infinite propagation speed of [55].

Foro = 1,b = 2 and ¢ # 0in Eq. (1.2), it becomes

Up — Ugee — E(U — Uge)xx + ULy = 2Uylixx + Ullgey, (1.4)

which is the one-dimensional version of the three dimensional Navier-Stokes-alpha model for turbulence [56,57], we call
Eq. (1.4) the viscous Camassa-Holm equation.

Ifa = 1,b = 3 and ¢ = 0in Eq. (1.2), then we find the Degasperis-Procesi equation [5]. The formal integrability of
the Degasperis-Procesi equation was obtained in [58] by constructing a Lax pair. It has a bi-Hamiltonian structure with an
infinite sequence of conserved quantities, and admits exact peakon solutions which are analogous to the Camassa-Holm
peakons [58].

The Degasperis—Procesi equation can be regarded as a model for nonlinear shallow water dynamics and its asymptotic
accuracy is the same as for the Camassa-Holm shallow water equation [2,3,19,21]. Dullin etal. [2] showed that the
Degasperis-Procesi equation can be obtained from the shallow water elevation equation by an appropriate Kodama
transformation. An inverse scattering approach for computing n-peakon solutions to the Degasperis—-Procesi equation was
presented in [59]. Its traveling wave solution was investigated in [60,61]. Holm and Staley [1] studied stability of solitons
and peakons numerically to the Degasperis—-Procesi equation.

After the Degasperis-Procesi equation was derived, many papers were devoted to its study, of [55,59-72]. For example,
the Cauchy problems for the Degasperis—Procesi equation on the line and on the circle have been studied recently. Local
well-posedness of this equation has been established in [45,62] for uy € H*(I) withs > 3/2, wherel = Rorl = R/Z.
Similar to the Camassa-Holm equation, the Degasperis-Procesi equation has also global strong solutions [40,63-66] as well
as finite time blow-up solutions [45,62-67]. On the other hand, it has global weak solutions in H'(I) [63,66,68].
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