Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Compact embeddings and proper mappings

J.M. Soriano*

Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, Aptdo. 1160, Sevilla 41080, Spain

ARTICLE INFO

Article history: Received 16 July 2009 Accepted 24 March 2010

MSC: primary 58C30 secondary 65H10

Keywords: Fixed point Continuation methods Surjective Implicit Function Theorem C¹-homotopy Proper mapping Compact embedding Coercive mapping Zorn's lemma

1. Preliminaries

Let X and Y be two normed spaces. If $u: X \to Y$ is a continuous mapping, then one way of solving the equation

u(x) = 0

is to embed (1) in a continuum of problems

$$H(t, x) = 0 \ (0 \le t \le 1),$$

which can easily be resolved when t = 0. When t = 1, the problem (2) becomes (1). In the case when it is possible to continue the solution for all t in [0, 1] then (1) is solved. This method is called continuation with respect to a parameter [1–24].

In this paper, sufficient conditions are given for proving that a C^1 -proper mapping $f : X \to Y$ has a fixed point, where X, Y are Banach spaces, and " $X \subseteq Y$ " represents a compact embedding. Other conditions, sufficient for guaranteeing the existence of fixed points, have been given by the author for finite-dimensional settings [7–14,16,17,19,23,24], for infinite-dimensional settings for Fredholm mappings [15,20], for infinite-dimensional Hilbert spaces for continuous embeddings [25] and for compact Banach manifolds modelled on \mathbb{R}^n [22]. Continuation methods were used both in the proofs of these papers and to prove the existence of open trajectories and lower bounds of stable stationary trajectories of ordinary differential equations [18,21]. Continuation methods are also used here. The proof supplies the existence of implicitly defined mappings whose ranges reach fixed points [1–24]. The key is the use of the Surjective Implicit Function Theorem [26], the properties of compact embeddings (see [27,26]), and Zorn's lemma and compactness (see [28]).

We briefly recall some theorems and concepts to be used.

ABSTRACT

Sufficient conditions are given to assert that a C^1 -proper mapping defined on a compact embedding between Banach spaces over \mathbb{K} has a fixed point. The proof of the result is based upon continuation methods.

© 2010 Elsevier Ltd. All rights reserved.

(1)

(2)

^{*} Tel.: +34 954557004; fax: +34 954557972. *E-mail address:* soriano@us.es.

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.03.037

Definitions (*[27,26]*). Henceforth we will assume that *X*, *Y* and *Z* are normed spaces over \mathbb{K} , where $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$, and U(x, y) is an open neighbourhood of the point (x, y).

Mapping $F : X \to Y$ is called *weakly coercive* if and only if $||F(x)|| \to \infty$ as $||x|| \to \infty$.

Mapping $F : D(F) \subseteq X \to Y$ is said to be *compact* whenever it is continuous and the image F(B) is relatively compact (i.e. its closure $\overline{F(B)}$ is compact in Y) for every bounded subset $B \subset D(F)$). Obviously, this second property is equivalent to the following: If (u_n) is a bounded sequence in D(F), then there exists a subsequence $(u_{n'})$ such that the subsequence $(F(u_{n'}))$ is convergent in Y.

Mapping *F* is said to be *proper* whenever the pre-image $F^{-1}(K)$ of every compact subset $K \subset Y$ is also a compact subset of D(F).

Let *X* and *Y* be Banach spaces over \mathbb{K} , with $X \subseteq Y$. The *embedding operator* $i : X \to Y$ is defined by i(u) = u for all $u \in X$. The *embedding* $X \subseteq Y$ is called *continuous* if *i* is continuous, i.e., $|| i(u) ||_Y \leq \text{const} || u ||_X$ for all $u \in X$.

The *embedding* $X \subseteq Y$ is called *compact* if *i* is compact, i.e., $|| i(u) ||_Y \leq \text{const} || u ||_X$ for all $u \in X$, and each bounded sequence (u_n) in X has a subsequence $(u_{n'})$ such that the sequence $(i(u_{n'}))$ is convergent in Y.

More generally, we speak of an *embedding* if there are two Banach spaces X and Y over \mathbb{K} and an injective linear operator $i: X \to Y$. Since *i* is injective, *u* can be identified with i(u). This can be represented as " $X \subseteq Y$ ".

The expression $H_x(x, t)$ denotes the partial F-derivative of H with respect to X at the point (x, t), where $H : U(x, t) \subseteq X \times Y \rightarrow Z$, and where U(x, t) is an open neighbourhood of the point (x, t).

The expression f'(x) denotes the F-derivative of f at the point x, where $f : X \to Y$.

Let $\mathcal{L}(X, Y)$ denote the set of all linear continuous mappings $L : X \to Y$.

Theorem 1. The Surjective Implicit Function Theorem. ([26], pp.268–269). Let X, Y, Z be Banach spaces over $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$, and let

 $F: U(u_0, v_0) \subseteq X \times Y \to Z$

be a C^1 -mapping on an open neighbourhood of the point (u_0, v_0) . Suppose that:

- (i) $F(u_0, v_0) = 0$, and
- (ii) $F_v(u_0, v_0) : Y \to Z$ is surjective.

Then the following are true:

(a) Let r > 0. There is a number $\rho > 0$ such that, for each given $u \in X$ with $|| u - u_0 || < \rho$, the equation

F(u, v) = 0

has a solution v, denoted by v(u), such that $|| v - v_0 || < r$. In particular, the limit $u \to u_0$ in X implies $v(u) \to v_0$. (b) There is a number d > 0 such that $|| v(u) || \le d || F_v(u_0, v_0)v(u) ||$.

2. Compact embeddings and proper mappings

Theorem 2. Let " $X \subseteq Y$ " be a compact embedding, where $X(X, \|\cdot\|_X)$ and $Y(Y, \|\cdot\|_Y)$ are Banach spaces over $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$, and

 $i: X \rightarrow Y$

is the injective linear continuous mapping. Let us suppose that the following hold:

- (i) $g: X \to Y$ is a C¹-proper mapping and mapping ti(x) g(x) is weakly coercive for each $t \in [0, 1]$.
- (ii) $\forall (x, t) \in X \times [0, 1]$ such that ti(x) g(x) = 0, the mapping $ti(x) g'(x) \in \mathcal{L}(X, Y)$ is surjective.

(iii) There is an x_0 such that $g(x_0) = 0$.

Then the following hold:

(a) There is an x* ∈ X such that g(x*) = i(x*).
(b) If X ⊆ Y and i(u) = u, then g has a fixed point x*, i.e., g(x*) = x*.

Proof. (a). Let us construct the mapping

 $H: X \times [0, 1] \rightarrow Y$, where H(x, t) := ti(x) - g(x).

We will prove here that H is a proper mapping, and since $0 \in Y$ is a compact set then $H^{-1}(0)$ is also a compact set.

Let *C* be any fixed compact subset of *Y*, and let any sequence such as $(H(x_n, t_n))_{n \ge 1}$ which belongs to *C* be fixed. It suffices to show that the sequence $((x_n, t_n))_{n \ge 1}$ contains a convergent subsequence $((x_{n''}, t_{n''}))_{n'' \ge 1}$. Since

 $(x_{n''}, t_{n''}) \rightarrow (u, t) \text{ as } n'' \rightarrow \infty,$

and *H* is continuous, then $H(u, t) \in C$, that is, $(u, t) \in H^{-1}(C)$, and therefore $H^{-1}(C)$ is a compact set and *H* a proper mapping.

Download English Version:

https://daneshyari.com/en/article/842117

Download Persian Version:

https://daneshyari.com/article/842117

Daneshyari.com