Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Topological properties of asymptotically stable sets

Emmanuel Moulay^{a,*}, Sanjay P. Bhat^{b,1}

^a Xlim (UMR-CNRS 6172), Département SIC, Université de Poitiers, Bât. SP2MI, Bvd Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France ^b TCS Innovation Labs Hyderabad, Tata Consultancy Services Limited, Deccan Park, Hi Tech City, Madhapur, Hyderabad 500081, India

ARTICLE INFO

Article history: Received 25 October 2008 Accepted 25 April 2010

Keywords: Asymptotically stable sets Domain of attraction Retraction Lyapunov functions

1. Introduction

ABSTRACT

Topological properties of the domain of attraction for dynamical systems are investigated. The main purpose of this paper is to prove that a compact, asymptotically stable attractor of a dynamical system defined on a locally compact metric space is a deformation retract of its domain of attraction, in a weak sense that is made precise. Under additional local assumptions, the attractor can be shown to be a retract, a deformation retract, or a strong deformation retract. The well known result that the domain of attraction of an asymptotically stable equilibrium is contractible follows as a corollary.

© 2010 Elsevier Ltd. All rights reserved.

In [1, Thm. 21], Eduardo Sontag has shown that the domain of attraction of a dynamical system with an asymptotically stable equilibrium point is contractible. In [2], it is proved that global asymptotic stability on a vector bundle implies contractibility of the base manifold. In particular, a continuous dynamical system on a state space that has the structure of a vector bundle on a compact manifold possesses no globally asymptotically stable equilibrium.

The main goal of this paper is to generalize Sontag's result [1, Thm. 21] for equilibria to compact, asymptotically stable sets. Our main result shows that a compact, asymptotically stable attractor of a continuous dynamical system defined on a locally compact metric space is a weak deformation retract of its domain of attraction in a sense that we define. A weak version of our result involving retract only has been stated in [3, Lemma 3.2]. We also show that, under additional topological assumptions, a weak deformation retract, a deformation retract, or a strong deformation retract. The additional assumptions are trivially satisfied in the case of an equilibrium, and hence [1, Thm. 21] follows as a corollary of our results.

We introduce the necessary notation and topological preliminaries in Section 2. Section 3 contains the main results. Finally, the conclusion is presented in Section 4.

2. Preliminaries

Throughout this paper, we consider a continuous, time-invariant semi-flow $\varphi : \mathbb{R}_{\geq 0} \times \mathcal{M} \to \mathcal{M}$ on a locally compact topological space \mathcal{M} . The semi-flow φ satisfies $\varphi(0, x) = x$ and $\varphi(t, \varphi(s, x)) = \varphi(t + s, x)$ for all $t, s \in \mathbb{R}_{\geq 0}$ and $x \in \mathcal{M}$. The topological space \mathcal{M} , called the state space, and the semi flow φ , also called the evolution function, together define a dynamical system, which we denote by (\mathcal{M}, φ) (see for instance [4,3]).

For each $t \in \mathbb{R}_{>0}$, we let φ_t denote the map $x \mapsto \varphi(t, x)$. Next, we recall the definition of stability.

* Corresponding author. Tel.: +33 (0)5 49 49 68 55; fax: +33 (0)5 49 49 65 70.

E-mail addresses: emmanuel.moulay@univ-poitiers.fr (E. Moulay), sanjay@atc.tcs.com (S.P. Bhat).

URL: https://bvent.univ-poitiers.fr/access/content/user/emoulay (E. Moulay).

¹ Tel.: +91 40 6667 3561.

 $^{0362\}text{-}546X/\$$ – see front matter C 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.04.043

Definition 1. The set $\mathcal{K} \subset \mathcal{M}$ is *asymptotically stable* if the following two conditions hold.

- 1. \mathcal{K} is *Lyapunov stable*, that is, for every open neighborhood $\mathcal{V} \subseteq \mathcal{M}$ of \mathcal{K} , there exists an open neighborhood $\mathcal{U} \subseteq \mathcal{M}$ of \mathcal{K} such that $\varphi_t(\mathcal{U}) \subseteq \mathcal{V}$ for every $t \ge 0$.
- 2. \mathcal{K} is *attractive*, that is, there exists an open neighborhood $\mathcal{W} \subseteq \mathcal{M}$ of \mathcal{K} such that, for every $x \in \mathcal{W}$ and every open neighborhood $\mathcal{U} \subseteq \mathcal{M}$ of \mathcal{K} , there exists $T \ge 0$ such that $\varphi(t, x) \in \mathcal{U}$ for all t > T.

The *domain of attraction* of an asymptotically stable set $\mathcal{K} \subseteq \mathcal{M}$ is the set \mathcal{A} of points *x* such that, for every open neighborhood \mathcal{U} of \mathcal{K} , there exists T > 0 such that $\varphi(t, x) \in \mathcal{V}$ for all $t \ge T$.

It is well known that the domain of attraction \mathcal{A} of a compact asymptotically stable set is open and *invariant*, that is, $\varphi_t(\mathcal{A}) = \mathcal{A}$ for all $t \ge 0$.

Next, we recall various different notions of retracts. A survey on the theory of retracts can be founded in [5].

Definition 2. Let $X \subseteq Y \subseteq \mathcal{M}$.

1. X is a retract of Y if there exists a continuous map $r : Y \to X$, called a retraction, such that r(x) = x for all $x \in X$.

2. *X* is a *deformation retract* of *Y* if there exists a continuous *homotopy* $h : [0, 1] \times Y \rightarrow M$ such that

h(0, y) = y, $h(1, y) \in X,$ h(1, x) = x,

for all $y \in Y$ and $x \in X$.

3. *X* is a strong deformation retract of Y if there exists a continuous homotopy $h : [0, 1] \times Y \to M$ such that

h(0, y) = y, $h(1, y) \in X,$ h(t, x) = x,

for all $y \in Y$, $x \in X$ and $t \in [0, 1]$.

4. *X* is a *weak deformation retract* of *Y* if every open neighborhood $U \subseteq M$ of *X* contains a strong deformation retract *V* of *Y* such that $X \subseteq V$.

A set $Y \subseteq M$ is *contractible* if there exists $x \in M$ such that the singleton set $X = \{x\}$ is a strong deformation retract of Y. We will also need the following definition.

Definition 3. $X \subseteq \mathcal{M}$ is a neighborhood retract (respectively, neighborhood deformation retract, strong neighborhood deformation retract) of \mathcal{M} if there exists an open neighborhood $Y \subseteq \mathcal{M}$ of X such that X is a retract (respectively, deformation retract, strong deformation retract) of Y.

Our first result relates Definitions 2 and 3.

Theorem 4. Suppose $X \subseteq M$ is a weak deformation retract of $Y \subseteq M$. Then the following statements hold.

1. If X is a neighborhood retract of \mathcal{M} , then X is a retract of Y.

2. If X is a neighborhood deformation retract of \mathcal{M} , then X is a deformation retract of Y.

3. If X is a strong neighborhood deformation retract of \mathcal{M} , then X is a strong deformation retract of Y.

Proof. First, note that since *X* is a weak deformation retract of *Y*, for every neighborhood $U \subseteq M$, there exist a set $V \subseteq U$ containing *X*, and a continuous map $h : [0, 1] \times Y \rightarrow V$ such that h(0, y) = y, $h(1, y) \in V$ and h(t, v) = v for all $y \in Y$, $v \in V$ and $t \in [0, 1]$.

To prove (1), suppose *X* is a neighborhood retract of \mathcal{M} . Then there exists an open neighborhood $U \subseteq \mathcal{M}$ of *X* and a continuous map $s : U \to X$ such that s(x) = x for all $x \in X$. Upon choosing the set *V* and the homotopy *h* as above, the map $r : Y \to X$ given by r(y) = s(h(1, y)) can easily be verified to be a retraction. Hence (1) follows.

Next, to prove (2), suppose X is a neighborhood deformation retract of \mathcal{M} . Then there exists an open neighborhood $U \subseteq \mathcal{M}$ of X and a continuous deformation retraction $s : [0, 1] \times U \to X$ such that s(0, u) = u, $s(1, u) \in X$, and s(1, x) = x for all $u \in U$ and $x \in X$. On choosing the set V and the homotopy h as in the first paragraph, it follows that the map $r : [0, 1] \times Y \to X$ given by

$$\begin{aligned} r(t, y) &= h(2t, y), \quad t \in \left[0, \frac{1}{2}\right], y \in Y, \\ &= s \left(2t - 1, h(1, y)\right), \quad t \in \left(\frac{1}{2}, 1\right], y \in Y. \end{aligned}$$

is continuous and satisfies r(0, y) = y, $r(1, y) \in X$ and r(1, x) = x for all $y \in Y$ and $x \in X$. Hence X is a deformation retract of Y.

The proof of (3) follows from the proof of (2) above by noting that, in the case where *X* is a strong neighborhood deformation retract of \mathcal{M} , the homotopy *s* may be chosen to additionally satisfy s(t, x) = x for all $x \in X$. Consequently, the homotopy *r* constructed above will also satisfy r(t, x) = x for all $x \in X$. Hence *X* is a strong deformation retract of *Y*. \Box

Download English Version:

https://daneshyari.com/en/article/842138

Download Persian Version:

https://daneshyari.com/article/842138

Daneshyari.com