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Functional inference of hypothetical proteins (HPs) is a significant task in the post-genomic era. We described
here a network-based protocol for functional inference of HPs using experimental transcriptomic, proteomic,
and protein–protein interaction (PPI) datasets. The protocol includes two steps: i) co-expression networks
were constructed using large proteomic or transcriptomic datasets of Synechocystis sp. PCC 6803 under various
stress conditions, and then combined with a Synechocystis PPI network to generate bi-colored networks that in-
clude both annotated proteins and HPs; ii) a global algorithm was adapted to the bi-colored networks for func-
tional inference of HPs. The algorithm ranked the associations between genes/proteins with known GO
functional categories, and assumed that the top one ranked HP for each GO functional category might have a
function related to the GO functional category. We applied the protocol to all HPs of the model cyanobacterium
Synechocystis, andwere able to assign putative functions to 122 HPs that have never been functionally character-
ized previously. Finally, the functional inference was validated by the known biological information of operon,
and results showed that more than 70% HPs could be correctly validated. The study provided a new protocol to
integrate different types of OMICS datasets for functional inference of HPs, and could be useful in achieving
new insights into the Synechocystis metabolism.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Hypothetical proteins (HPs) are proteins predicted fromnucleic acid
sequences and that have not been demonstrated by any experimental
evidence (Lubec et al., 2005). They constitute about 25–40% of all
open reading frames in well-studied model microorganisms, such as
Escherichia coli (Galperin and Koonin, 2004). However, this proportion
could be as high as 50% in the genomes of less-studied microorganisms
(Doerks et al., 2012). Since HPs compose a considerable fraction of
proteomes in microbial genomes, it is possible that they are serving im-
portant and even novel biological roles (Adams et al., 2007; Desler et al.,
2009; Eisenstein et al., 2000). In fact, it becomes clear that the existing of
a large number of HPs in the genomics data has significantly restricted
the effort in deciphering microbial metabolism, raising urgent needs
to develop new experimental and computational methods to decode
or infer functions of HPs (Mazandu and Mulder, 2012).

Cyanobacteria are autotrophic prokaryotes that can perform oxy-
genic photosynthesis, similar to that performed by higher plants
(Rippka et al., 1979). According to a recent survey of CyanoBase

(http://genome.microbedb.jp/cyanobase), 30–60% of the putative
proteins are HPs in various cyanobacterial genomes. The model
cyanobacterial species, Synechocystis sp. PCC 6803 (here after
Synechocystis) is the first phototrophic organism sequenced (Kaneko
et al., 1995, 1996), and significant researches have been conducted on
it (Govindjee, 2011). However, evenwithmany years' efforts in improv-
ing its genome annotation, the Synechocystis genome still contains a
large proportion of HPs, with nearly 33% of all putative proteins are
still annotated as HPs (Qiao et al., 2013a). Meanwhile more evidence
is emerging that HPs may play important physiological roles in
Synechocystis. For example, HP Slr1799 was found to be involved in re-
sponse to salt stress (Karandashova et al., 2002) and chloroplast HP
Slr0374 is involved in the regulation of CO2 utilization in Synechocystis
(Jiang et al., 2015).

Since experimental characterization of protein function cannot ac-
commodate the vast amount of HPs already available in the database
(Liolios et al., 2010), the computational-based annotation has therefore
been proposed as one useful and practical mean in inferring function of
HPs, and providing functional clues for further experimental validation
(Radivojac et al., 2013). Among various computational methods,
the network-based approach has attracted significant attention in
deciphering potential function since it is not dependent of sequence
similarity (Kourmpetis et al., 2010).
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Two types of network-based approaches have been previously
established: direct annotation and module-assisted scheme (Sharan
et al., 2007). The direct annotation scheme is guided by the principle
that proteins that lie closer to one another in the network aremore like-
ly to have a similar function (Deng et al., 2003; Karaoz et al., 2004;
Letovsky and Kasif, 2003; Mostafavi et al., 2008; Vazquez et al., 2003),
while the module-assisted scheme defines protein modules based on
connectivity of different proteins in the network and then assigns possi-
ble functions to proteins based on associated member proteins with
known functions (Arnau et al., 2005; Becker et al., 2012). So far a num-
ber of algorithms have been developed for both direct- and module-
assisted function predictions, and a fraction of themhave even been im-
plemented and supported with graphical interfaces (Sharan et al.,
2007). In a simplistic comparison of the two approaches, Sharan et al.
(2007) applied a simple neighbor-counting method and the more in-
volved module-assisted the molecular complex detection algorithm
(MCODE) to protein–protein interaction (PPI) datasets, and found that
direct method has a higher specificity in predicting functions when
compared to the module-assisted one.

Recently a new method of the direct annotation scheme was devel-
oped and used to annotate functions of long non-coding RNAs, and re-
sults showed that the inferred functions highly matched to those in
the literature (Guo et al., 2012). Using this method as a core, in this
paper, we described a network-based protocol for functional inference
of HPs using experimental OMICS datasets and existing PPI datasets.
To integrate different types of datasets (i.e., genomics, transcriptomics
and proteomics), bi-colored biological networks were first constructed
using either transcriptomics or proteomics, alongwith PPI data. In addi-
tion, a global propagation algorithm was applied to the networks to
infer functions of HPs (Guo et al., 2012). The analysis resulted in func-
tional inference of 122 HPs in the Synechocystis genome, which were
then validated using operon information. The study provided a new
protocol to integrate different types of experimental OMICS datasets
for functional inference of HPs.

2. Methods

2.1. Data sources

2.1.1. Proteomic data
A total of eleven iTRAQ LC–MS/MS proteomic datasets of

Synechocystis from previous studies were obtained. For the first five
datasets, Synechocystis was grown under ethanol (1.50%, v/v), butanol
(0.20%, v/v), hexane (0.80%, v/v), salt stress (4%,w/v) and nitrogen star-
vation conditions, respectively. For each condition, cells were harvested
at two time points (i.e., 24 and 48 h) that were corresponding to
middle-exponential and exponential-stationary transition phases in
the growth time courses for proteomics analysis (Huang et al., 2013;
Liu et al., 2012; Qiao et al., 2012, 2013b; Tian et al., 2013). In the remain-
ing six datasets, knockout mutants in Synechocystis grown under condi-
tions of ethanol (1.60%, v/v), butanol (0.25%, v/v), cadmium (4.0 μM),
pH 5.0, pH 12.0, and salt stress (4%,w/v). Cells were harvested at either
36 or 48 h (Chen et al., 2014; Qiao et al., 2012, 2013b; Ren et al., 2014;
Tian et al., 2013). The mass spectroscopy analysis was performed
using an AB SCIEX TripleTOF™ 5600mass spectrometer (AB SCIEX, Fra-
mingham, MA), coupled with an online micro-flow HPLC system
(Shimadzu Co, Kyoto, Japan) as described previously (Unwin et al.,
2010). For details regarding experimental design and quality control
of the data, please refer to the previous publications (Huang et al.,
2013; Liu et al., 2012; Qiao et al., 2012, 2013b; Ren et al., 2014; Tian
et al., 2013).

2.1.2. Transcriptomic data
Five RNA-seq transcriptomic datasets of Synechocystis from previ-

ous studies were obtained. Cells were collected from five stress con-
ditions: 0.2% butanol (v/v), 1.5% ethanol (v/v), 0.8% hexane (v/v),

4.0% NaCl (w/v), and nitrogen-starvation treatments. For each condi-
tion, cells were harvested at three time points (i.e., 24, 48 and 72 h)
for transcriptomic analysis. For details regarding experimental
design and quality control of the data, please refer to the previous
publications (Huang et al., 2013; Liu et al., 2012; Qiao et al., 2013b;
Wang et al., 2012; Zhu et al., 2013).

2.1.3. PPI dataset and annotation information
A PPI dataset of Synechocystiswas downloaded from the STRING da-

tabase (http://www.string-db.org/) (Jensen et al., 2009). In the STRING
database, several types of evidences for the association, including geno-
mic context, high-throughput experiments, conserved coexpression
and previous biological knowledge were used to calculate a single
combined_score for each gene in the genome. In this study, the
combined_scores indicative of a higher confidence than other single ev-
idence, were applied to construct the PPI network to cover potential
protein–protein connections (Szklarczyk et al., 2011).

To describe protein function, we used the classification scheme pro-
vided by the biological process (BP) of the Gene Ontology (GO) Consor-
tium (Ashburner et al., 2000; Lægreid et al., 2003). The known ‘gene2go’
associations in the Synechocystis genome were downloaded from
CyanoBase database (Nakamura et al., 1998).

2.2. Missing value estimation

To improve the quality of imputation of missing proteomic values,
three imputation methods were first implemented and evaluated,
they were: the method based on K nearest neighbors (KNN) algorithm
(Thirumahal and Patil, 2014), the local least squares imputation
(LLSimpute) method (Kim et al., 2005), and the imputation method
based on chained equations named predictive mean matching (PMM)
(Souverein et al., 2006). To compare error rates for each method, a set
of valueswere randomly chosen from a proteomic dataset and removed
to generate an incomplete proteomic dataset at certain missing rates.
Because the real values are known, the estimation error can be calculat-
ed. Thesemethods were evaluated according to normalized root-mean-
square error (NRMSE) values:

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1
yj−ŷ j

� �2
=N

r

σy

where yj is the real value, ŷj is the estimated value, and σy is the stan-
dard deviation for the N true values (Kim et al., 2005). The value of
NRMSE is between 0.0 and 1.0. A smaller NRMSE value means a higher
accuracy. The evaluation criteria have been applied in several previous
studies (Feten et al., 2005; Meng et al., 2014).

2.3. Construction of bi-colored networks

The procedure to construct co-expression network includes:i) data
normalizationwas performedwith the rawproteomic or transcriptomic
data converted into a ratio of condition versus its control, and then log2
transformed; ii) correlation values were calculated for all possible pairs,
in which correlation was defined as the Pearson correlation coefficient
for all pairwise genes/proteins; iii) normalized the correlation coeffi-
cient using aMin–Max linear normalization algorithmdeveloped previ-
ously (Guo et al., 2012), and then the co-expression network was
constructed in which theweight of edge represents Pearson correlation
coefficients, and the node of network represents genes/proteins (Pei
et al., 2014); iv) a correlation coefficient cutoff was applied to the co-
expression network, where only gene/protein pairs with a correlation
coefficient higher than the cutoff were considered connected. As the bi-
ological networks behave like a scale-free network (Tsoi et al., 2014),
the distribution of connections follows power-law relationship. To se-
lect suitable correlation coefficient cutoff for co-expression networks,
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