Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

On ground state solutions for singular and semi-linear problems including super-linear terms at infinity

C.A. Santos*

Departamento de Matemática, Universidade de Brasília, Campus Darcy Ribeiro, ICC, Asa Norte, 70910-900, Brasília-DF, Brazil

ARTICLE INFO

Article history: Received 18 March 2009 Accepted 11 May 2009

MSC: 35125 35J20 35167

Keywords: Entire solutions Sub-linear super-linear terms Asymptotic behavior Ground state solutions

1. Introduction

In the present paper we establish a new result concerning the existence of solution for the nonlinear semi-linear problem

$$\begin{cases} -\Delta u = \lambda f(x, u) & \text{in } \mathbb{R}^N, \\ u > 0 & \text{in } \mathbb{R}^N, \qquad u(x) \to 0, \quad |x| \to \infty, \end{cases}$$
(1.1)

where $f : \mathbb{R}^N \times (0, \infty) \to [0, \infty)$ is a continuous function and $\lambda > 0$ is a real parameter.

The class of problems (1.1) appears in many nonlinear phenomena, for instance, in the theory of quasi-regular and quasiconformal mappings [1–3], in the generalized reaction-diffusion theory [4], in the turbulent flow of a gas in porous medium and in the Newtonian fluid theory [5].

It follows by the non-negativity of the function f, of parameter λ and a strong maximum principle that all non-negative and non-trivial solutions of (1.1) must be strictly positive (see Serrin and Zou [6]). So, again from [6], it follows that (1.1) admits solutions if and only if N > 3.

The particular case f(x, u) = b(x)g(u), where $b : \mathbb{R}^N \to (0, \infty)$ is locally Hölder continuous and $g : (0, \infty) \to (0, \infty)$ is a C^1 suitable function has been considered in (1.1) in recent years by a number of authors. More specifically, the problem:

$$\begin{cases} -\Delta u = \lambda b(x)g(u) \quad \text{in } \mathbb{R}^N, \\ u > 0 \quad \text{in } \mathbb{R}^N, \quad u(x) \to 0, \quad |x| \to \infty. \end{cases}$$
(1.2)

Tel.: +55 6132741406; fax: +55 6132732737.

E-mail addresses: capdsantos@gmail.com, csantos@unb.br.

ABSTRACT

We establish a result concerning the existence of entire, positive, classical and bounded solutions which converge to zero at infinity for the semi-linear equation $-\Delta u = \lambda f(x, u)$, $x \in \mathbb{R}^N$, where $f : \mathbb{R}^N \times (0, \infty) \to [0, \infty)$ is a suitable function and $\lambda > 0$ is a real parameter. This result completes the principal theorem of A. Mohammed [A. Mohammed, Ground state solutions for singular semi-linear elliptic equations, Nonlinear Analysis (2008) doi: 10.1016/j.na.2008.11.080] mainly because his result does not address the superlinear terms at infinity. Penalty arguments, lower-upper solutions and an approximation procedure will be used.

© 2009 Elsevier Ltd. All rights reserved.

⁰³⁶²⁻⁵⁴⁶X/\$ - see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2009.05.050

Consider the hypotheses under *b*:

(b₁) $\int_1^\infty t \hat{b}(t) dt < \infty$, where $\hat{b}(t) = \max_{|x|=t} b(x)$, for t > 0, (b₂) the problem

$$\begin{cases} -\Delta u = b(x) \quad \text{in } \mathbb{R}^N, \\ u > 0 \quad \text{in } \mathbb{R}^N, \quad u(x) \to 0, \quad |x| \to \infty \end{cases}$$

has a unique solution $w_b \in C^{2,\alpha}_{loc}(\mathbb{R}^N)$. Also concerning g:

> $\begin{array}{ll} (g_1) \ g \ is \ non-increasing, \\ (g_2) \ \lim_{t \to 0} g(t) = \infty, \\ (g_3) \ g \ is \ bounded \ in \ a \ neighborhood \ at \ \infty, \\ (g_5) \ \frac{g(t)}{t+c} \ is \ decreasing \ for \ some \ c > 0, \\ (g_6) \ \frac{g(t)}{t} \ is \ decreasing, \\ (g_7) \ \lim_{t \to \infty} \sup \frac{g(t)}{t} < \frac{1}{\|w_b\|_{\infty}}, \\ \end{array}$ $(\mathbf{g}_7) \limsup_{t\to\infty} \frac{g(t)}{t} < \frac{1}{\|w_h\|_{\infty}},$

A brief overview. The problem (1.2), with $\lambda = 1$, has been studied and ground state solutions have been established by a number of authors. Lair and Shaker [7] and Zhang [8] proved that the problem (1.2) has a solution under (g_1) and (g_2) hypotheses. Feng and Liu in [9] established a solution for (1.2) if (g₂) and (g₃) hold. Cîrstea and Rãdulescu in [10] showed that (1.2) has a unique ground state if (g_3) , (g_4) and (g_5) are satisfied. Goncalves and Santos in [11] improved the earlier results because under assumptions (g_4) , (g_6) and (g_8) proved the existence of solutions for (1.2). Zhang in [12] improved all earlier results because he assumed only (g_4) , (g_8) and non-monotonicity condition was required.

To complete the overview, first we consider the following eigenvalue problem

$$\begin{cases} -\Delta u = \lambda \rho(x) u & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \quad u = 0 & \text{on } \partial \Omega, \end{cases}$$
(1.4)

where Ω is a bounded smooth domain of \mathbb{R}^N and $\rho \neq 0$ is a non-negative function locally Hölder continuous.

It is known that the first eigenvalue variational $\lambda_1 = \lambda_1(\rho, \Omega)$ satisfies $\lambda_1(\rho, \Omega_1) \ge \lambda_1(\rho, \Omega_2)$ if $\Omega_1 \subseteq \Omega_2$. So there exists

$$\lambda_1(\rho) = \lim_{k \to \infty} \lambda_1(\rho, B_k(0)) \in [0, \infty), \tag{1.5}$$

where $B_k(0)$ is the ball centered at the origin and radius $k = 1, 2, \dots$ Additionally, $\lambda_1(\rho)$ is positive if (b_1) is satisfied with ρ in the place of b.

Now, I suppose

- (f₁) f(x, s) is locally Hölder continuous em $\mathbb{R}^N \times (0, \infty)$ and continuous differentiable in the variable *s*, (f₂) $f(x, s) \leq b(x)g(s)$ for all $(x, s) \in \mathbb{R}^N \times (0, \infty)$ for some $b : \mathbb{R}^N \to [0, \infty), b \neq 0$ and $g : (0, \infty) \to (0, \infty)$ continuous functions,
- (f₃) $f(x, s) \ge a(x)h(s)$ for all $(x, s) \in \mathbb{R}^N \times (0, s_0)$ for some $0 < s_0 \le 1, a : \mathbb{R}^N \to [0, \infty), a \ne 0$ and $h : (0, s_0) \to (0, \infty)$ continuous functions.

In a recent result A. Mohammed [13] improved all earlier results about the existence of ground state solutions for problems like (1.1), which includes (1.2) as a particular case, because he proved the existence under (f_1) , (f_2) and (f_3) hypotheses with a and b strictly positive, b satisfying (b_2) , $h(s) = \lambda s$, s > 0 with $\lambda > \lambda_1(a, B_1(0))$ and g as in (g_7) .

To state our main result we will establish the following notations

$$h_0 = \lim_{s \to 0} \frac{h(s)}{s} \in (0, \infty]$$
 and $g_\infty = \lim_{s \to \infty} \frac{g(s)}{s} \in [0, \infty].$

Theorem 1.1. Suppose $(f_1)-(f_3)$ with b satisfying (b_2) hold. Then the problem (1.1) has a solution $u = u_{\lambda} \in C^2(\mathbb{R}^N)$ if either

(i) $g_{\infty} < \infty$ and $\lambda_1(a)/h_0 < \lambda < 1/g_{\infty} \|w_b\|_{\infty}$, or (ii) $g_{\infty} = \infty$, $h_0 = \infty$ and $0 < \lambda < \lambda^*$, for some $\lambda^* > 0$.

Additionally, if (b_1) holds then there exist c, d > 0 constants such that

 $c|x|^{2-N} < u(x) < d|x|^{2-N}, \quad |x| > 1.$

Theorem 1.1 completes the principal result of Mohammed in [13] not only because it permits super-linear nonlinearities at infinity but also because the terms a and b are not assumed to be positive throughout \mathbb{R}^{N} .

(1.3)

Download English Version:

https://daneshyari.com/en/article/842201

Download Persian Version:

https://daneshyari.com/article/842201

Daneshyari.com