Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Strong convergence theorems of modified Ishikawa iterative process with errors for an infinite family of strict pseudo-contractions^{**}

Gang Cai*, Chang song Hu

Department of Mathematics, Hubei Normal University, Huangshi, 435002, China

ARTICLE INFO

Article history: Received 2 March 2009 Accepted 11 May 2009

Keywords: Strict pseudo-contractions Strong convergence Iterative algorithm Fixed point Banach space

ABSTRACT

In this paper, we study modified Ishikawa iterative process with errors to have strong convergence for an infinite family of strict pseudo-contractions in the framework of q-uniformly smooth Banach spaces. Our results improve and extend the recent ones announced by many others.

© 2009 Elsevier Ltd. All rights reserved.

(1.1)

1. Introduction

Throughout this paper, we denote by *E* and *E*^{*} a real Banach space and the dual space of *E*, respectively. Let *C* be a subset of *E* and *T* be a self-mapping of *C*. We use *F*(*T*) to denote the fixed points of *T*. Let q > 1 be a real number. The (generalized) duality mapping $J_q : E \to 2^{E^*}$ is defined by

$$J_q(x) = \left\{ x^* \in E^* : \langle x, x^* \rangle = \|x\|^q, \|x^*\| = \|x\|^{q-1} \right\}, \quad \forall x \in E.$$

In particular, $J = J_2$ is called the normalized duality mapping and $J_q(x) = ||x||^{q-2} J_2(x)$ for $x \neq 0$. If *E* is a Hilbert space, then J = I, where *I* is the identity mapping. It is well known that if *E* is smooth, then J_q is single-valued, which is denoted by j_q . Recall that *T* is a nonexpansive mapping if

$$\|Tx-Ty\|\leq \|x-y\|,$$

for all $x, y \in C$.

A mapping *T* is called a pseudo-contraction, if there exists some $j_q(x - y) \in J_q(x - y)$ such that

$$\langle Tx - Ty, j_q(x - y) \rangle \le \|x - y\|^q, \tag{1.2}$$

for all $x, y \in C$.

T is said to be a λ -strict pseudo-contraction in the terminology of Browder and Petryshyn [1], if there exists a constant $\lambda > 0$ such that

$$\langle Tx - Ty, j_q(x - y) \rangle \le \|x - y\|^q - \lambda \|(I - T)x - (I - T)y\|^q,$$
(1.3)

for every $x, y \in C$ and for some $j_q(x - y) \in J_q(x - y)$.

* Corresponding author.

^{*} Supported by the National Science Foundation of China under Grant (10771175) and the Natural Science Foundational Committee of Hubei Province: D200722002, Innovation Scientific Research Foundation of Hubei Normal University.

E-mail addresses: caigang-aaaa@163.com (G. Cai), huchang1004@yahoo.com.cn (C.s. Hu).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2009.05.051

Let *C* be a nonempty closed convex subset of a real Hilbert space *H*, and *T* : $C \rightarrow C$ be a mapping. *T* is said to be a *k*-strict pseudo-contraction in the sense of Browder and Petryshyn [1], if there exists a $\kappa \in [0, 1)$ such that

$$\|Tx - Ty\|^{2} \le \|x - y\|^{2} + \kappa \|(I - T)x - (I - T)y\|^{2},$$
(1.4)

for every $x, y \in C$.

T is said to be a strong pseudo-contraction if there exists $\kappa \in (0, 1)$ such that

$$\langle Tx - Ty, j_q(x - y) \rangle \leq \kappa ||x - y||^q$$
,

for every $x, y \in C$.

Remark 1.1. From (1.3) we can prove that if *T* is λ -strict pseudo-contractive, then *T* is Lipschitz continuous with the Lipschitz constant $L = \frac{1+\lambda}{\lambda}$. The class of strongly pseudo-contractive mappings is independent of the class of λ -strict pseudo-contractions (see, e. g., Zhou [2]).

A self-mapping $f: C \longrightarrow C$ is a contraction on C, if there exists a constant $\alpha \in (0, 1)$ such that

$$\|f(x) - f(y)\| \le \alpha \|x - y\|, \quad \forall x, y \in C.$$

We use \prod_C to denote the collection of all contractions on *C*. That is, $\prod_C = \{f | f : C \to C \text{ a contraction}\}$. Let $S(E) = \{x \in E : ||x|| = 1\}$. Then the norm of *E* is said to be Gâteaux differentiable if

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}$$
(Δ)

exists for each $x, y \in S(E)$. In this case, E is said to be smooth. The norm of E is said to be uniformly Gâteaux differentiable if, for each $y \in S(E)$, the limit (Δ) is attained uniformly for $x \in S(E)$. The norm of the E is said to be Frêchet differentiable, if for each $x \in S(E)$, the limit (Δ) is attained uniformly for $y \in S(E)$. The norm of E is called uniformly Frêchet differentiable, if the limit (Δ) is attained uniformly for $x, y \in S(E)$. It is well known that (uniform) Frêchet differentiability of the norm of E implies (uniform) Gâteaux differentiability of norm of E.

A Banach space *E* is said to be strictly convex if, whenever *x* and *y* are not colinear, ||x + y|| < ||x|| + ||y||.

Let $\rho_E : [0, \infty) \longrightarrow [0, \infty)$ be the modulus of smoothness of *E* defined by

$$\rho_E(t) = \sup\left\{\frac{1}{2}(\|x+y\| + \|x-y\|) - 1 : x \in S(E), \|y\| \le t\right\}.$$

A Banach space *E* is said to be uniformly smooth if $\frac{\rho_E(t)}{t} \to 0$ as $t \to 0$. A Banach space *E* is said to be *q*-uniformly smooth, if there exists a fixed constant c > 0 such that $\rho_E(t) \le ct^q$. It is well known that *E* is uniformly smooth if and only if the norm of *E* is uniformly Fréchet differentiable. If *E* is *q*-uniformly smooth, then $q \le 2$ and *E* is uniformly smooth, and hence the norm of *E* is uniformly Fréchet differentiable, in particular, the norm of *E* is Fréchet differentiable. Typical examples of both uniformly convex and uniformly smooth Banach spaces are L^p , where p > 1. More precisely, L^p is min $\{p, 2\}$ -uniformly smooth for every p > 1.

Recall that, if *C* and *D* are nonempty subsets of a Banach space *E* such that *C* is nonempty closed convex and $D \subset C$, then a mapping $Q : C \longrightarrow D$ is sunny [3] provided

Q(x + t(x - Q(x))) = Q(x) for all $x \in C$ and $t \ge 0$,

whenever $x+t(x-Q(x)) \in C$. A sunny nonexpansive retraction is a sunny retraction, which is also a nonexpansive mapping. In a real *q*-uniformly smooth Banach space, Xu [4] proved the important inequality.

Lemma 1.2. Let *E* be a real *q*-uniformly smooth Banach space, then there exists a constant $C_q > 0$ such that

 $||x + y||^q \le ||x||^q + q \langle y, j_q x \rangle + C_q ||y||^q$,

for all $x, y \in E$. In particular, if E is real 2-uniformly smooth Banach space, then there exists a best smooth constant K > 0 such that

$$||x + y||^2 \le ||x||^2 + 2 \langle y, jx \rangle + 2 ||Ky||^2$$

for all $x, y \in E$.

The relation between the λ -strict pseudo-contractive mapping and the nonexpansive mapping can be obtained from the following Lemma.

Lemma 1.3 ([5]). Let C be a nonempty convex subset of a real q-uniformly smooth Banach space E and $T : C \to C$ be a λ -strict pseudo-contraction. For $\alpha \in (0, 1)$, we define $T_{\alpha}x = (1 - \alpha)x + \alpha Tx$. Then, as $\alpha \in (0, \mu]$, $\mu = \min\left\{1, \left\{\frac{q\lambda}{C_q}\right\}^{\frac{1}{q-1}}\right\}$, $T_{\alpha} : C \to C$ is nonexpansive such that $F(T_{\alpha}) = F(T)$.

(1.5)

Download English Version:

https://daneshyari.com/en/article/842202

Download Persian Version:

https://daneshyari.com/article/842202

Daneshyari.com