

Contents lists available at ScienceDirect

Nonlinear Analysis

Fixed point results for generalized quasicontraction mappings in abstract metric spaces*

H.K. Pathak^a, N. Shahzad^{b,*}

- ^a School of Studies in Mathematics, Pt. Ravishankar Shukla University, Raipur (C.G.) 492010, India
- ^b King Abdul Aziz University, Department of Mathematics, PO Box 80203, 21589 Jeddah, Saudi Arabia

ARTICLE INFO

Article history: Received 9 January 2009 Accepted 11 May 2009

MSC: 47H10 54H25

Keywords: Generalized quasicontraction mapping

ABSTRACT

In this paper, we introduce the concept of generalized quasicontraction mappings in an abstract metric space. By using this concept, we construct an iterative process which converges to a unique fixed point of these mappings. The result presented in this paper generalizes the Banach contraction principle in the setting of metric space and a recent result of Huang–Zhang for contractions. We also validate our main result by an example.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Cone metric space

In the 60s of the last century, the notion of a metric space was generalized, replacing the set of real numbers by an ordered linear space with a cone *K* and the new notion was called, a *K*-metric space or a generalized metric space. Since then, this notion was used for establishing fixed point theorems, see, e.g., [1–10] and also the references therein. Recently, Huang–Zhang [11] rediscovered this notion and called it a cone metric space (It seems that they were unaware of the earlier work.). Huang–Zhang also obtained some fixed point theorems of contractive mappings in cone metric spaces or *P*-metric spaces. One of their main results is the following:

Theorem 1.1. Let (M, d) be a complete P-metric space and P be a normal cone with normal constant K. Suppose that the mapping $T: M \to M$ satisfies the contractive condition

$$d(Tx, Ty) < \lambda \cdot d(x, y) \tag{1.1}$$

for all $x, y \in M$, where $\lambda \in [0, 1)$ is a constant. Then T has a unique fixed point in M and for any $x \in M$, the iterative sequence $\{T^nx\}$ converges to the fixed point.

Let (M, ρ) be a P-metric space. A map $T: M \to M$ such that for some constant $\lambda \in (0, 1)$ and for every $x, y \in M$, there exists $u \in C(T, x, y) := \{\rho(x, y), \rho(x, Tx), \rho(y, Ty), \rho(x, Ty), \rho(y, Tx)\}$, such that

$$\rho(\mathsf{TX},\mathsf{Ty}) \le \lambda u \tag{1.2}$$

Research partially supported by University Grants Commission, New Delhi, India.

^{*} Corresponding author.

E-mail addresses: hkpathak05@gmail.com (H.K. Pathak), nshahzad@kau.edu.sa, Naseer_shahzad@hotmail.com (N. Shahzad).

is called *quasicontraction* (see [12]). Ciric [13,14] introduced quasicontraction in metric spaces as one of the most general contractive type map and proved that every quasicontraction map *T* possesses a unique fixed point in a complete metric space.

The aim of this paper is to introduce the concept of generalized quasicontraction mappings in *P*-metric space. We construct an iterative process which converges to a unique fixed point of these mappings in cone metric spaces. The result presented in this paper generalizes the Banach contraction principle in the setting of metric space and a recent result of Huang–Zhang for contractions in complete *P*-metric spaces. We also validate our main result by an example.

2. Preliminaries

First of all we review some basic definitions and notations. Let E be always a real Banach space and P be a subset of E.

Definition 2.1. *P* is called a cone if and only if

- (1) *P* is closed, nonempty and $P \neq \{0\}$:
- (2) if $a, b \in R$, $a, b \ge 0$ then $x, y \in P \Rightarrow ax + by \in P$;
- (3) $x \in P$ and $-x \in P \Rightarrow x = 0$.

Given a cone $P \subset E$, we define a partial ordering \leq with respect to P by $x \leq y$ if and only if $y - x \in P$. If $P \subset E$ is endowed with partial ordering \leq as defined above, then the pair (E, \leq) is called an ordered Banach space and the cone P is called a positive cone. We shall write x < y to indicate that $x \leq y$ but $x \neq y$, while $x \ll y$ will stand for $y - x \in \text{int}P$, intP denotes the interior of P. The cone P is called normal if $\inf\{\|x + y\| : x, y \in P \cap \partial B_1\} > 0$. The norm $\|\cdot\|$ on E is called semimonotone if there is a number E of such that for all E, we define a partial ordering E with respect to E or E is endowed with partial ordering E.

```
0 \le x \le y implies ||x|| \le K||y||.
```

The least positive number K satisfying the above relation is called the *normal constant* of P. It may be remarked that P is normal iff $\|\cdot\|$ is semimonotone. The norm $\|\cdot\|$ on E is called *monotone* if $0 \le x \le y$ implies $\|x\| \le \|y\|$. The cone P is called *regular* if every increasing sequence which is bounded from above is convergent. That is, if $\{x_n\}$ is a sequence such that $x_1 \le x_2 \le \cdots \le x_n \le \cdots \le y$ (or $y \le \cdots \le x_n \le x_{n-1} \le \cdots \le x_2 \le x_1$) for some $y \in E$, then there is a $x \in E$ such that $\|x_n - x\| \to 0$, $n \to \infty$. Equivalently, the cone P is regular if and only if every increasing (resp. decreasing) sequence which is bounded from above (resp. below) is convergent. It is well known that a regular cone is a normal cone.

Definition 2.2. A map $f: X \to E$ is called *T-orbitally lower semicontinuous at x*, if for any sequence $\{T^n x\}$ in X and $\bar{x} \in X$ such that $T^n x \to \bar{x}$, we have $f(\bar{x}) < \lim \inf_{n \to \infty} f(T^n x)$.

Definition 2.3. Let M be a nonempty set. Suppose the mapping $d: M \times M \to E$ satisfies

- (d1) $0 \le d(x, y)$ for all $x, y \in M$ and d(x, y) = 0 if and only if x = y;
- (d2) d(x, y) = d(y, x) for all $x, y \in M$;
- (d3) $d(x, y) \leq d(x, z) + d(z, y)$ for all $x, y, z \in M$.

Then d is called a cone metric on M, and (M, d) is called a cone metric space or a P-metric space.

Let (M, d) be a P-metric space. Let $\{x_n\}$ be a sequence in M. We say that $\{x_n\}$ is convergent to some $x \in M$, if for any $c \in E$ with $0 \ll c$ there exists N such that for all n > N, $d(x_n, x) \ll c$. We denote this by $\lim_{n \to \infty} x_n = x$. We say that $\{x_n\}$ is a Cauchy sequence in M if for any $c \in E$ with $0 \ll c$ there exists N such that for all n, m > N, $d(x_n, x_m) \ll c$.

A space M is said to be a complete P-metric space if every Cauchy sequence is convergent in M. If $\{x_n\}$ is convergent to some $x \in M$, then $\{x_n\}$ is a Cauchy sequence. If P is a normal cone with normal constant K then: (i) $\{x_n\}$ converges to x iff $\lim_{n\to\infty} d(x_n,x)=0$; (ii) $\{x_n\}$ is a Cauchy sequence iff $\lim_{n,m\to\infty} d(x_n,x_m)=0$; (iii) if $\{x_n\}$ and $\{y_n\}$ are two sequences in M such that $\lim_{n\to\infty} x_n=x$, $\lim_{n\to\infty} y_n=y$ for some $x,y\in M$, then $\lim_{n,m\to\infty} d(x_n,y_n)=d(x,y)$.

Let $T: M \to M$ and let $O(x; \infty)$ be an orbit of T at a point $x \in M$ i.e., the set of the form $\{x, Tx, T^2x, \ldots, T^nx, \ldots\}$. A space M is said to be T-orbitally complete if every sequence $\{T^{n_i}x\}_{i\in\mathbb{N}}, x \in M$, which is a Cauchy sequence, has a limit point in M. If M is a complete space, then M is T-orbitally complete with respect to any self-mapping T on M.

Let (M, ρ) be a metric space. A mapping $T: M \to M$ is said to be a Banach contraction mapping if there exists $0 < \lambda < 1$ such that $\rho(Tx, Ty) \leq \lambda \rho(x, y)$ for all x, y in M. It is obvious that the Banach contraction mapping is continuous and it is well known that in complete metric spaces it has a unique fixed point [15]. In [16] the concept of p-contraction mappings was introduced. A mapping $T: Y \subset M \to M$ is said to be a p-contraction mapping if Y is T-invariant and it satisfies the following inequality

$$\rho(Tx, T^2x) \le p(x)\rho(x, Tx) \quad \text{for all } x \text{ in } Y, \tag{2.1}$$

where $p: Y \to [0, 1)$ is a mapping such that $\sup_{x \in Y} p(Tx) = \lambda < 1$. Further, if $\bigcap_{n=0}^{\infty} T^n(Y)$ is a singleton set, where $T^n(Y) := TT^{n-1}(Y)$ for each $n \in \mathbb{N}$ and $T^0(Y) := Y$, then T is said to be a strong p-contraction.

Examples 2.1 and 2.2 in [16] show that the p-contraction mapping is essentially more general than the Banach contraction mapping and not necessarily need to be continuous.

Download English Version:

https://daneshyari.com/en/article/842204

Download Persian Version:

https://daneshyari.com/article/842204

<u>Daneshyari.com</u>