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a b s t r a c t

In this work we consider the maximum and antimaximum principles for the nonlocal
Dirichlet problem

J ∗ u− u+ λu+ h =
∫

RN
J(x− y)u(y) dy− u(x)+ λu(x)+ h(x) = 0

in a bounded domain Ω , with u(x) = 0 in RN \ Ω . The kernel J in the convolution is as-
sumed to be a continuous, compactly supported nonnegative function with unit integral.
We prove that for λ < λ1(Ω), the solution verifies u > 0 inΩ if h ∈ L2(Ω), h ≥ 0, while
for λ > λ1(Ω), and λ close to λ1(Ω), the solution verifies u < 0 in Ω , provided

∫
Ω
h(x)

φ(x) dx > 0, h ∈ L∞(Ω). This last assumption is also shown to be optimal. The ‘‘Neumann’’
version of the problem is also analyzed.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

This note is mainly concerned with the validity of the maximum and antimaximum principles for the nonlocal
inhomogeneous linear problem

∫
RN
J(x− y)u(y) dy− u(x)+ λu(x)+ h(x) = 0 x ∈ Ω,

u(x) = 0 x ∈ RN \Ω.
(1.1)

Here Ω is a bounded domain of RN , h is a given function and λ is a real parameter. The operator J ∗ u − u =
∫

RN J(x −
y)u(y) dy − u(x) is a nonlocal diffusion operator that has been recently used to model several physical situations (see for
example [1] in the context of biological models). Without further mention, we are always assuming that the kernel J is
continuous, nonnegative, supported in the unit ball B of RN and with unit integral. We also suppose that J > 0 in B and
that J(−x) = J(x) for every x. The condition u(x) = 0 in RN \ Ω is the nonlocal analogue to the usual Dirichlet boundary
condition u|∂Ω = 0 imposed when one considers the usual Laplacian as the diffusion operator, see [2].
The general problem{

(J ∗ u)(x)− u(x) = f (x, u(x)) x ∈ Ω,
u(x) = 0 x ∈ RN \Ω, (1.2)
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and its parabolic version have been widely treated in the recent literature. In most of the references, Ω = RN so that the
Dirichlet condition is not present. We quote for instance [3–11], devoted to travelling front type solutions to the parabolic
problem whenΩ = R, and [12–16], that study problem (1.2) with a logistic type, bistable or power-like nonlinearity. The
particular instance of the parabolic problem in RN when f = 0 is considered in [2,17], while the ‘‘Neumann’’ boundary
condition for the same problem is treated in [18–20]. See also [21] for the appearance of convective terms and [22,23] for
interesting features in other related nonlocal problems. We also mention the paper [24], where some logistic equations and
systems of Lotka–Volterra type are studied, and interesting biological conclusions are obtained.
Problem (1.1) is the nonlocal analogue of{

∆u(x)+ λu(x)+ h(x) = 0 x ∈ Ω,
u(x) = 0 x ∈ ∂Ω. (1.3)

One can see this analogy considering the functional whose critical points are solutions to (1.1) and performing a first order
Taylor expansion; we refer to [12] for details.
Since the maximum and antimaximum principles have shown to be powerful tools when analyzing nonlinear elliptic

problems related to (1.3), we want to analyze them in the context of the nonlocal problem (1.1).
Recall that themaximumprinciple is well known for problem (1.3) in the following form: if h ≥ 0 and λ < σ1(Ω), where

σ1(Ω) denotes the first eigenvalue of the Dirichlet Laplacian in Ω , then u > 0 in Ω and ∂u
∂ν
< 0 on ∂Ω , where ν stands

for the outward unit normal to ∂Ω . Moreover, the condition λ < λ1(Ω) is known to be also necessary (see [25–27] and
also [28] for a version involving the p-Laplacian).
With respect to the antimaximum principle, it has been proved that for h ∈ Lp(Ω), p > N , such that

∫
Ω
h(x)ψ(x) dx > 0,

with ψ > 0 an eigenfunction associated to σ1(Ω), there exists δ > 0 such that u < 0 inΩ and ∂u
∂ν
> 0 on ∂Ω for σ1(Ω) <

λ < σ1(Ω)+ δ. See [29,30], and also [31] for a quasilinear version. It was later proved in [32] that the condition h ∈ Lp(Ω),
p > N is necessary.
Our main objective in this work is to show that a version of the maximum and antimaximum principles remains valid

for problem (1.1).
A word on the notion of solution to (1.1): by a solution we mean a function u ∈ L1(Ω) which verifies (1.1) almost

everywhere. Although inmost placeswe are dealingwith h ∈ L2(Ω), which forces u ∈ L2(Ω). However, we remark thatwith
h ∈ L∞(Ω) it always follows that u ∈ L∞(Ω), and we are requiring this extra regularity for the validity of the antimaximum
principle. It will be also shown that this condition is not superfluous.
An important role in what follows will be played by the principal eigenvalue λ1(Ω) of the problem{

(J ∗ u)(x)− u(x)+ λu(x) = 0 x ∈ Ω,
u(x) = 0 x ∈ RN \Ω, (1.4)

whose existence and properties will be briefly considered in Section 2. Now, we only quote that λ1(Ω) is positive and less
than one, and it has an associated eigenfunction φ ∈ C(Ω)which verifies φ > 0 inΩ (let us mention in passing that φ has
a jump discontinuity across ∂Ω , see [33]).
We now come to the statement of the maximum principle. Let us mention that problem (1.1) has a unique solution for

every h ∈ L2(Ω) provided λ < λ1(Ω) or λ ∈ (λ1(Ω), λ1(Ω)+ ε), if ε is small enough (see Remark 1 in Section 2).

Theorem 1. Let h ∈ L2(Ω) be such that h ≥ 0, h 6≡ 0, and let u ∈ L2(Ω) be the solution to (1.1) with λ < λ1(Ω). Then u > 0
inΩ .

We remark that the condition u > 0 in Ω means in this context that ess inf u > 0, since for h ∈ L2(Ω) we only have
u ∈ L2(Ω).
Next, we consider the antimaximum principle.

Theorem 2. Let h ∈ L∞(Ω) verify∫
Ω

h(x)φ(x)dx > 0.

Then there exists ε = ε(h) > 0 such that for λ ∈ (λ1(Ω), λ1(Ω)+ ε) the unique solution to (1.1) verifies u < 0 inΩ .

We also consider the question of optimality of the hypothesis h ∈ L∞(Ω). We stress that if h 6∈ L∞(Ω) then u 6∈ L∞(Ω),
and this provokes the failure of the antimaximum principle.

Theorem 3. There exists a small ε > 0 and h ∈ L2(Ω), h 6∈ L∞(Ω) with∫
Ω

h(x)φ(x) dx > 0

such that the unique solution to (1.1) for λ ∈ (λ1(Ω), λ1(Ω)+ ε), is positive somewhere inΩ .
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