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1. Introduction

Let Uy = U(0, R) be an open ball with center origin and radius R in R¥, N = 2, 3, and O, be a family of open convex
domains included in Uz which will be precised later. Consider the following stationary Navier-Stokes equation in domain
2 CcRrRV:

—vAu+ Wu-Vyu+Vp=f in§$2,
divu=0 in £2, (1)
u=2~0 onds2,

where v > 0 is the viscosity constant of the fluid and f € (L?(Ug))" is a given function, u denotes the velocity while p
denotes the pressure, and £2 € ..

For each open subset w C R, we denote C§° (w) = {u € (C§°(w))";divu = 0} and Hy ,(w) = CgY, (w)“'"”l, the
completion of (5 () in the norm of (H' (w))".

We say that u is a weak solution of (1) if u € H(},U (£2) and

/Vu-Vq)dx—{-/(u-V)u-(pdx:/f-(pdx, (2)
2 2 2

for all ¢ € Cg5, (£2).
It is well known that (see [1,2]) for each 2 € O, Eq. (1) has at least one weak solution, moreover, there exists a positive
constant C(v, R) depending only on the viscosity constant v and the radius R of set Ug such that if

If lzyn < Cv, R) (3)
then the weak solution of (1) corresponding to each §2 is unique. We shall assume in this paper that (3) holds.
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In this paper, we shall study the following shape optimization problem

P) inf / F(x, up, Vug) dx
2

€0,

where u, is a weak solution of (1) corresponding to 2 € O, F(x, £, 1) : Ug x RN x RN*N — R* is continuous and satisfies
that there exists a positive constant s such that

IFx, & | < s(1 4 Elgn + nl2nn) (4)

forall (x, &, 1) € Ug x RN x RVXN,
Now we define

O, = {2 C Ug; £ is convex domain in U with .2V (£2) > ¢}

where ¢V (£2) is the Lebesgue measure of £2 and c is a fixed positive constant.
The topology on ¢, is induced from the Hausdorff-Pompeiu distance between the complementary sets, i.e.,

p(£21, §22) = max{ sup d(x,Ug\ §22), sup d(Ur\ £21,y)}, V 21,2, € O, (5)
xeUg\ 21 yeUR\$2;

where d(-, -) denotes the Euclidean metric in R¥, We denote by Hlim, the limit in the sense of (5).
In fact, the similar families @, have been discussed in [3-7]. But we will obtain the results by some different ways in this

paper.
In this work, we obtain the following main result on the family ©.:

Theorem 2.1. If {2,,}°_ , C O, then there exists a subsequence {21, }7°; of {2}, such that
Hlim 2, =2 and £ € O..

k— o0
i.e., (O, p)is acompact metric space.

Based on these, we obtain the existence of the optimal solutions for problem (P):
Theorem 3.1. The shape optimization problem (P) has at least one solution.
2. Some properties related to the family ¢,

In this section, we assume that k > 0 is an arbitrary integral; d(A, B), A, B C R, denotes the distance between sets A
and B in R¥, especially, we denote d({a}, B) = d(a, B); and we shall use the following notations:

3(K1, K2) = max{sup d(x, Kz), sup d(Ky, y)},

xekq yeky
where K; and K, are compact subsets in R¥; U(x, r) denotes the open ball in R with center x and radius r; [xo, x1] = {txo +
(1—t)x; € R¥; 0 <t < 1}isaclosed segment in R¥ with two extremal points o, x1; L = L(qg, . . ., Gi_1, @i, Gig1, . . ., ;) =
L(ag, ..., ai_1, Giz1, - . ., ;) denotes the hyperplane spanned by t vectorsa; € R¥, i =0,...,i—1,i+1,...,¢t.

The following definitions and results were given and proved in [8,9,3,10-12], which will be used in this paper.
Definition 2.1. Aset A = {yp, ¥1, ..., .} of t + 1 points in R¥, is geometrically independent means that no hyperplane of
dimension t — 1 contains all the points.

Definition 2.2. Let {yo, 1, ..., ¥:} be a set of geometrically independent points in R¥. The t-dimensional geometric simplex
or t-simplex, o*, spanned by {yo, ¥1, . . ., y:} is the set of all points x € R for which there exist nonnegative real numbers

Ao, - .., Ar such that

t t
XZZM%’, ZMZL
i=0 i=0

The numbers Aq, ..., A are the barycentric coordinates. The points {yy, ¥1, . . ., ¥} are the vertices of o*. The set of all points
x in o' with all barycentric coordinates positive is called the open geometric t-simplex spanned by {yg, y1, ..., ¥t}

Definition 2.3. A simplex o*~1isa (k — 1)-face of a simplex o ¥ means that each vertex of %~ is a vertex of ’¥.

Definition 2.4. Let o be a k-dimensional geometric simplex and U(x, r) be an open ball with center x and radius r in
R we call U(x, r) an interior contact ball of o* if U(x,r) C o* and each (k — 1)-face of o* tangent to the ball U(x, r),
ie., Card(c* ' NU(x, 1)) = 1. Here Card(c*~' N U(x, r)) denotes the cardinality of the set ¥ N U (x, r).

Lemma 2.1. Let A, A,,n = 1,2, ..., be compact subsets in R¥ such that §(A,, A) — 0, then A is the set of all accumulation
points of the sequences {x,} such that x,, € A, for each n.
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