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ARTICLE INFO ABSTRACT
MSC: In this paper the oscillation susceptibility of an aircraft in a longitudinal flight with constant
g:g;g forward velocity is analyzed in different flight models. Conditions which ensure such a
J0E15 flight, and equations governing the flight are presented. The stability of the equilibriums
appearing is analyzed and the existence of Hopf bifurcations and saddle-node bifurcations
Keywords: is researched. For two aircrafts in a simplified model it is shown that saddle-node
A_emdmamics bifurcations are present and there are no Hopf bifurcations. It is shown that for the elevator
Bifurcation deflection there are two turning points §, < &, having the property that if §, ¢ [879 EJ

Pilot-induced oscillation

o then the angle of attack & and the pitch rate g oscillate with the same period, while the
Soft stability loss

pitch angle 0 increases (decreases) tending to +00 (—o0). The behavior of the aircraft
is simulated in the simplified model when the elevator deflection &, varies in the range
(69, &) and when &, leaves this range. For one of the aircrafts the analysis is performed
also in the not simplified model, showing the differences between the results obtained in
different models.
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1. Introduction

Interest in oscillation susceptibility of an aircraft is generated by crashes of high performance fighter airplanes, such as the
YF = 22A and B-2, due to oscillations that were not predicted during the aircraft development [1]. Flying qualities and Pilot-
Induced-Oscillation (PIO) prediction are based on linear analysis and their quasi-linear extensions [2]. These analysis cannot,
in general, predict the presence or the absence of PIO, because of the large variety of nonlinear pilot-aircraft interactions
that have been identified as factors contributing to PIOs. Some of these factors include pilot behavioral transitions, actuator
rate limiting [3-5] and changes in aircraft dynamics caused by transitions in operating conditions [6], gain scheduling and
switching [7]. The analysis of nonlinear PIO involves the computation of nonlinear phenomena including bifurcations (Hopf
or fold bifurcations) that lead sometimes to large changes in the stability of the Pilot-Vehicle-System (PVS).

According to [1], PIO analysis means the evaluation of the PIO potential of a given aircraft:

Identify characteristics of the pilot-aircraft system that may result in PIO.

Demonstrate the potential for PIO by analysis and simulations using appropriate piloting tasks and test maneuvers.
Distinguish aircraft configurations that are less susceptible to PIOs from those that have high PIO potential.
Suggest “fixes” to reduce and/or eliminate PIO susceptibility.
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As examples in [1] the X-15 PIO caused by the rate limiting and an F/A-18 PIO caused by nonlinear category III triggers
are presented. The limit cycle amplitudes as functions of pilot gain are computed for the longitudinal flight equations of
motion and large jump in limit cycle amplitude indicating a significant change in PVS stability is revealed.

Several years ago, ONERA undertook the development as a methodology, based on bifurcation theory devoted to the
analysis of the asymptotic behavior of nonlinear differential equations depending on parameters. In [8] the author applies
this methodology to a real combat aircraft, the German-French Alpha-Jet, and presents some significant results related to
oscillatory motions and to sensitivity of spin behavior. Bifurcation theory was used in [9] for the model selection for high
incidence flight mechanics analysis.

A common feature of the above presented papers is the research of the Hopf bifurcations which conduct to the oscillations
of all the parameters with the same period.

Our aim in this paper is to analyze the oscillation susceptibility of an aircraft in a longitudinal flight with constant forward
velocity in different flight models. For this purpose, equations governing such a flight and the conditions which ensure the
existence of such a flight are presented. Using these equations the equilibriums, which appear in such a flight, are analyzed
from the point of view of the presence of Hopf bifurcations or saddle-node bifurcations. For two aircrafts in a simplified
model it is shown that saddle-node bifurcations are present and there are no Hopf bifurcations. It is shown that for the
elevator deflection there are two turning points §, < §., having the property that if §, & [(Se, (Se], then the angle of attack «
and the pitch rate g oscillate with the same period, while the pitch angle 8 increases (decreases) tending to +o0o (—o0). The
behavior of the aircraft is simulated when the elevator deflection &, is in the range (69, 876) and when §, leaves this range. For
one of the aircrafts the analysis is performed also in the not simplified model, showing the differences between the results
obtained in different models.

2. Preliminaries
The system of differential equations [10,11], which describes the motion around the center of gravity of a rigid aircraft,

with respect to an xyz body-axis system, where xz is the plane of symmetry, is:
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The state parameters of this system are: forward velocity V, angle of attack «, sideslip angle 8, roll rate p, pitch rate g, yaw
rate r, Euler roll angle ¢, Euler pitch angle 6 and Euler yaw angle . The constants I, I, and I, = moments of inertia about
the x-, y- and z-axis, respectively; I,, = product of inertia, g = gravitational acceleration; and m = mass of the vehicle. The
aerodynamical forces X, Y, Z and moments L, M, N are functions of the state parameters and the control parameters: §, =
aileron deflection; 6. = elevator deflection; and §, = rudder deflection (the body flap, speed break, &, §, are available as
additional controls but, for simplicity, they are set to 0 in the analysis to follow). A longitudinal flight is defined as a flight
forwhichfg = p=r = ¢ = ¢ = 0and §, = §, = 0. Such a flight is possible if and only if Y = L = N = 0 for
5=p=r=¢)=1//=Oand80=5r=0.

The system of differential equations which describes the motion of the aircraft in a longitudinal flight is:
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