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1. Introduction

In [7], the authors considered the following generalised trapezoid formula
[u(b) —u@)]f (b) +[ux) —u(@]f(a), x¢€lab]
in order to approximate the Riemann-Stieltjes integral fa b f (t) du (t). They proved the inequality
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for any x € [a, b], provided that f : [a,b] — R is of bounded variation on [a, b] and u is of r — H-Hélder type,

ie,u(t)—u(s)| < H|t—s| foranyt,s € [a, b], wherer € (0, 1] and H > 0 are given. Here \/2 (f) denotes the total
variation of f on [a, b] .
In [4], the following dual result has been obtained as well:
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for any x € [a, b], provided that f is of r — H-Holder type and u is of bounded variation.
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For other inequalities of this type, see the recent papers [6,3,5].

The main aim of the present paper is to continue the study on approximating the Riemann-Stieltjes integral fab f(@®)du(t)
by the use of some generalised trapezoid-type rules. To be more specific, we investigate the error bounds in approximating

fabf (t) du (t) by the simpler quantities:
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f(b) [L/ u(t)dt — u(a)] + f (a) [u (b) — L/ u(t) dt} (1.3)
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and
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[u(b)—u(a)][f(b)+f(a)— ) f(t)dt] (14)

provided the Riemann integral fa b f (t) dt exists and can be either computed exactly or can be accurately approximated by
the use of various classical quadrature rules. Applications for approximating the Riemann integral of a two-function product
are provided as well.

For other recent quadrature rules for the Riemann-Stieltjes integral, see [2,8,9] and the references therein. For related
results, see [1,10-12].

2. Integral representation of the error

For a function g : [a, b] — R we define ¥, : [a, b] — R by

g@t—a+gb)b-1t)
b—a ’

We can state the following result.

Ve (t) =g (t) —

Theorem 1. If f,u : [a, b] — R are bounded on |a, b] and such that the Riemann-Stieltjes integral fabf (t) du (t) and the
Riemann integral fab u (t) dt exist, then
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Proof. We have
b b 1 b b
/ W () du (t) = / f(t)du(t)—b_a[f(a) / (t — ) du(0) +F (b) / (b—r)du(r)]. (2.3)

Integrating by parts in the Riemann-Stieltjes integral, we also have fab (t—a)du(t) = (b—a)u) — fab u (t) dt and
fab b-—tdu(t)=—Gb—-—a)u(a) + fab u (t) dt. Then, we have
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and by (2.3) we deduce the desired result (2.2). O

The second result can be stated as:

Theorem 2. With the assumptions of Theorem 1, we have:
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