ELSEVIER

Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Approximating the Riemann–Stieltjes integral in terms of generalised trapezoidal rules

S.S. Dragomir

Research Group in Mathematical Inequalities & Applications, School of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia

ARTICLE INFO

MSC: 26D15 41A55

Keywords: Riemann-Stieltjes integral Trapezoidal rules Ostrowski inequality

ABSTRACT

Error bounds in approximating the Riemann–Stieltjes integral in terms of some new generalised trapezoidal rules are given. Applications for approximating the Riemann integral of a two-function product are provided as well.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In [7], the authors considered the following generalised trapezoid formula

$$[u(b) - u(x)]f(b) + [u(x) - u(a)]f(a), x \in [a, b]$$

in order to approximate the *Riemann–Stieltjes integral* $\int_a^b f(t) du(t)$. They proved the inequality

$$\left| \int_{a}^{b} f(t) \, \mathrm{d}u(t) - [u(b) - u(x)] f(b) - [u(x) - u(a)] f(a) \right| \le H \left[\frac{1}{2} (b-a) + \left| x - \frac{a+b}{2} \right| \right]^{r} \bigvee_{a}^{b} (f)$$
(1.1)

for any $x \in [a, b]$, provided that $f : [a, b] \to \mathbb{R}$ is of bounded variation on [a, b] and u is of r - H-Hölder type, i.e., $|u(t) - u(s)| \le H |t - s|^r$ for any $t, s \in [a, b]$, where $r \in (0, 1]$ and H > 0 are given. Here $\bigvee_a^b (f)$ denotes the total variation of f on [a, b].

In [4], the following dual result has been obtained as well:

$$\begin{aligned} \left| \int_{a}^{b} f(t) \, du(t) - [u(b) - u(x)] f(b) - [u(x) - u(a)] f(a) \right| &\leq H \left[(x - a)^{r} \bigvee_{a}^{x} (u) + (b - x)^{r} \bigvee_{x}^{b} (u) \right] \\ &\leq \begin{cases} H \left[(x - a)^{r} + (b - x)^{r} \right] \left[\frac{1}{2} \bigvee_{a}^{b} (u) + \frac{1}{2} \left| \bigvee_{a}^{x} (u) - \bigvee_{x}^{b} (u) \right| \right]; \\ \left[(x - a)^{qr} + (b - x)^{qr} \right]^{\frac{1}{q}} \left[\left[\left[\bigvee_{a}^{x} (u) \right]^{p} + \left[\bigvee_{x}^{b} (u) \right]^{p} \right]^{\frac{1}{p}} & \text{if } p > 1, \ \frac{1}{p} + \frac{1}{q} = 1; \\ H \left[\frac{1}{2} (b - a) + \left| x - \frac{a + b}{2} \right| \right]^{r} \bigvee_{a}^{b} (u) \end{aligned}$$
(1.2)

for any $x \in [a, b]$, provided that f is of r - H-Hölder type and u is of bounded variation.

E-mail address: sever.dragomir@vu.edu.au.

URL: http://www.staff.vu.edu.au/rgmia/dragomir/.

⁰³⁶²⁻⁵⁴⁶X/ $\$ – see front matter $\$ 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2008.10.004

For other inequalities of this type, see the recent papers [6,3,5].

The main aim of the present paper is to continue the study on approximating the Riemann–Stieltjes integral $\int_a^b f(t) du(t)$ by the use of some generalised trapezoid-type rules. To be more specific, we investigate the error bounds in approximating $\int_a^b f(t) du(t)$ by the simpler quantities:

$$f(b)\left[\frac{1}{b-a}\int_{a}^{b}u(t)\,\mathrm{d}t - u(a)\right] + f(a)\left[u(b) - \frac{1}{b-a}\int_{a}^{b}u(t)\,\mathrm{d}t\right]$$
(1.3)

and

$$[u(b) - u(a)] \left[f(b) + f(a) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right],$$
(1.4)

provided the Riemann integral $\int_a^b f(t) dt$ exists and can be either computed exactly or can be accurately approximated by the use of various classical quadrature rules. Applications for approximating the Riemann integral of a two-function product are provided as well.

For other recent quadrature rules for the Riemann–Stieltjes integral, see [2,8,9] and the references therein. For related results, see [1,10–12].

2. Integral representation of the error

For a function $g : [a, b] \to \mathbb{R}$ we define $\Psi_g : [a, b] \to \mathbb{R}$ by

$$\Psi_{g}(t) := g(t) - \frac{g(a)(t-a) + g(b)(b-t)}{b-a}.$$
(2.1)

We can state the following result.

Theorem 1. If $f, u : [a, b] \to \mathbb{R}$ are bounded on [a, b] and such that the Riemann–Stieltjes integral $\int_a^b f(t) du(t)$ and the Riemann integral $\int_a^b u(t) dt$ exist, then

$$\int_{a}^{b} f(t) du(t) - \left\{ f(b) \left[\frac{1}{b-a} \int_{a}^{b} u(t) dt - u(a) \right] + f(a) \left[u(b) - \frac{1}{b-a} \int_{a}^{b} u(t) dt \right] \right\}$$
$$= \int_{a}^{b} \Psi_{f}(t) du(t).$$
(2.2)

Proof. We have

$$\int_{a}^{b} \Psi_{f}(t) \, \mathrm{d}u(t) = \int_{a}^{b} f(t) \, \mathrm{d}u(t) - \frac{1}{b-a} \left[f(a) \int_{a}^{b} (t-a) \, \mathrm{d}u(t) + f(b) \int_{a}^{b} (b-t) \, \mathrm{d}u(t) \right]. \tag{2.3}$$

Integrating by parts in the Riemann–Stieltjes integral, we also have $\int_a^b (t-a) du(t) = (b-a) u(b) - \int_a^b u(t) dt$ and $\int_a^b (b-t) du(t) = -(b-a) u(a) + \int_a^b u(t) dt$. Then, we have

$$\frac{1}{b-a} \left[f(a) \int_{a}^{b} (t-a) \, du(t) + f(b) \int_{a}^{b} (b-t) \, du(t) \right]$$

= $f(b) \left[\frac{1}{b-a} \int_{a}^{b} u(t) \, dt - u(a) \right] + f(a) \left[u(b) - \frac{1}{b-a} \int_{a}^{b} u(t) \, dt \right],$

and by (2.3) we deduce the desired result (2.2). \Box

The second result can be stated as:

Theorem 2. With the assumptions of Theorem 1, we have:

$$[u(b) - u(a)] \left[f(b) + f(a) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right] - \int_{a}^{b} f(t) du(t) = \int_{a}^{b} \Psi_{u}(t) df(t).$$
(2.4)

Download English Version:

https://daneshyari.com/en/article/842243

Download Persian Version:

https://daneshyari.com/article/842243

Daneshyari.com