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a b s t r a c t

We give a new computational method to obtain symmetries of ordinary differential
equations. The proposed approach appears as an extension of a recent algorithm to
compute variational symmetries of optimal control problems [P.D.F. Gouveia, D.F.M. Torres,
Automatic computation of conservation laws in the calculus of variations and optimal
control, Comput.Methods Appl.Math. 5 (4) (2005) 387–409], and is based on the resolution
of a first order linear PDE that arises as a necessary and sufficient condition of invariance
for abnormal optimal control problems. A computer algebra procedure is developed, which
permits one to obtain ODE symmetries by the proposed method. Examples are given, and
results compared with those obtained by previous available methods.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Sophus Lie was the first to introduce the use of symmetries into the study of differential equations, Emmy Noether
the first to recognize the important role of symmetries in the calculus of variations. Currently, all the computer algebra
systems that address differential equations provide several tools to help the user with the analysis of Lie symmetries.
Recently, the authors developed a computer algebra package for the automatic computation of Noether variational
symmetries in the calculus of variations and optimal control [5], now available as part of the Maple Application Center
at http://www.maplesoft.com/applications/app_center_view.aspx?AID=1983.
The omnipresent tools for Lie symmetries provide a great help for the search of solutions of ODEs, their classification,

order reduction, proof of integrability, or in the construction of first integrals. From the mathematical point of view, a ODE
symmetry is described by a group of transformations that keeps the ordinary differential equation invariant. Depending
on the type of transformations one is considering, different symmetries are obtained. An important class of symmetries
is obtained considering a one-parameter family of transformations, which form a local Lie group. Those transformations
are often represented by a set of functions known as the infinitesimal generators. From the practical point of view, the
determination of the infinitesimal generators that define a symmetry for a given ODE is, in general, a complex task [6,11].
To address the problem, we follow a different approach.
We propose a new method for computing symmetries of ODEs by using a Noetherian perspective. Making use of our

previous algorithm [5], that has shown up good results for the computation of Noether variational symmetries of problems
of the calculus of variations and optimal control, we look to an ODE as being the control system of an optimal control
problem. Then, we obtain symmetries for the ODE by computing the abnormal variational symmetries of the associated
optimal control problem.
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This paper is organized as follows. In Section 2, the necessary concepts associatedwith variational symmetries in optimal
control are reviewed. The newmethod for computing symmetries of ODEs is explained in Section 3. Themethod is illustrated
in Section 4, where we compute symmetries for three distinct ODEs and compare the results with the ones obtained by the
standard procedures available inMaple.We end the paperwith Section 5 of conclusions and final comments. The definitions
of the new Maple procedure that implements our method are given in Appendix.

2. Symmetries in optimal control

Without loss of generality, we consider the optimal control problem in Lagrange form: tominimize an integral functional

I[x(·),u(·)] =
∫ b

a
L(t, x(t),u(t)) dt (1)

subject to a control system described by a system of ordinary differential equations of the form

ẋ(t) = ϕ(t, x(t),u(t)), (2)

together with appropriate boundary conditions. The Lagrangian L : R × Rn × Rm → R and the velocity vector ϕ :
R × Rn × Rm → Rn are assumed to be continuously differentiable functions with respect to all their arguments. The
controls u : [a, b] → Rm are piecewise continuous functions; the state variables x : [a, b] → Rn continuously differentiable
functions.
The celebrated Pontryagin Maximum Principle [10] (PMP for short) gives a first-order necessary optimality condition.

The PMP can be proved from a general Lagrange multiplier theorem. One introduces the Hamiltonian function

H(t, x,u, ψ0,ψ) = ψ0L(t, x,u)+ ψT · ϕ(t, x,u), (3)

where (ψ0,ψ(·)) are the ‘‘Lagrange multipliers’’, with ψ0 ≤ 0 a constant and ψ(·) a n-vectorial piecewise C1-smooth
function, and the multiplier theorem asserts that the optimal control problem is equivalent to the maximization of the
augmented functional

J[x(·),u(·), ψ0,ψ(·)] =
∫ b

a

(
H(t, x(t),u(t), ψ0,ψ(t))− ψ(t)T · ẋ(t)

)
dt. (4)

Definition 1. A quadruple (x(·),u(·), ψ0,ψ(·)) satisfying the Pontryagin Maximum Principle is said to be a (Pontryagin)
extremal. An extremal is said to be normalwhen ψ0 6= 0, abnormalwhen ψ0 = 0.

Let hs : [a, b] × Rn × Rm × R× Rn → R× Rn × Rm × Rn be a one-parameter group of C1 transformations of the form

hs(t, x,u, ψ0,ψ) = (hst(t, x,u, ψ0,ψ),h
s
x(t, x,u, ψ0,ψ),h

s
u(t, x,u, ψ0,ψ),h

s
ψ(t, x,u, ψ0,ψ)). (5)

Without loss of generality, we assume that the identity transformation of the group (5) is obtained when the parameter s is
zero:

h0t (t, x,u, ψ0,ψ) = t, h0x(t, x,u, ψ0,ψ) = x,
h0u(t, x,u, ψ0,ψ) = u, h0ψ(t, x,u, ψ0,ψ) = ψ.

Associated with a one-parameter group of transformations (5), we introduce its infinitesimal generators:

T (t, x,u, ψ0,ψ) =
∂

∂s
hst

∣∣∣∣
s=0
, X(t, x,u, ψ0,ψ) =

∂

∂s
hsx

∣∣∣∣
s=0
,

U(t, x,u, ψ0,ψ) =
∂

∂s
hsu

∣∣∣∣
s=0
, Ψ(t, x,u, ψ0,ψ) =

∂

∂s
hsψ

∣∣∣∣
s=0
. (6)

We can define variational invariance using the augmented functional (4) and the one-parameter group of transformations
(5) or an equivalent condition in terms of the generators (6):

Definition 2 ([3,13]). An optimal control problem (1)–(2) is said to be invariant under (6) or, equivalently, (6) is said to be a
symmetry of the problem (1)–(2) if

∂H
∂t
T +

∂H
∂x
· X+

∂H
∂u
· U+

∂H
∂ψ
· Ψ − Ψ T · ẋ− ψT ·

dX
dt
+ H

dT
dt
= 0, (7)

with H the Hamiltonian (3).

A computational algorithm to obtain the infinitesimal generators T , X, U, and Ψ that form a variational symmetry (7) for
a given optimal control problem (1)–(2) was developed in [5]. Here we remark that the abnormal variational symmetries
(i.e. the ones associatedwithψ0 = 0) obtained by themethod introduced in [5] provide symmetries for ordinary differential
equations.
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