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a b s t r a c t

The first fully nonlinearmean field theory of relativistic gravitationwas developed in 2004.
The theory makes the striking prediction that averaging or coarse graining a gravitational
field changes the apparent matter content of space–time. A review of the general theory
is presented, together with applications to black hole and cosmological space–times. The
results strongly suggest that at least part of the dark energymay be the net large scale effect
of small scale fluctuations around a mean homogeneous isotropic cosmology.
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1. Introduction

General relativity is a nonlinear theory and, hence, small scale phenomena may have a non-trivial average effect at large
scales. Since, at the same time, astrophysical and cosmological observations have only finite space and time resolutions, it
is in practice necessary [1] to develop a mean field theory of gravitation, i.e. an effective theory allowing a self-consistent
description of the observed gravitational field at a given scale or resolution, accounting for the average net effects of small
scale phenomena not accessible within a given observational setup.
Developing such an effective theory has long been a subject of active research [2–8]. The first general mean field theory

for Einstein gravitationwas obtained four years ago [9,10]. The theorymakes the striking prediction that averaging or coarse
graining a gravitational field changes the apparent matter content of space–time. In particular, the net ‘large scale’ effect
of the averaged-upon, ‘small scale’ gravitational degrees of freedom is to contribute an ‘apparent matter’ at large scale,
necessary to account for the coarse grained gravitational field. Thismattermay be charged if the gravitational field is coupled
to an electromagnetic field.
This contribution is organized as follows. We first introduce the general mean field theory. Then we address

perturbatively the important example of background gravitational waves around a simple homogeneous and isotropic,
spatially flat dust universe; our results show, at least for this very simple model, that there is a frequency and amplitude
range in which background waves, while being undetectable with current techniques, would generate an apparent large
scale matter of energy density comparable to the energy density of the dust.
Finally we present coarse grainings of both the Schwarzschild and the extreme Reisner–Nordström (RN) black holes. In

particular, the Schwarzschild black hole, which is a vacuum solution of the Einstein field equations, is shown to appear,
after coarse graining, as surrounded by an apparent matter whose equation of state strongly resembles the equation of state
commonly postulated for cosmological dark energy.We also investigate thermodynamical aspects, highlighting the fact that
the envisaged coarse graining transforms the extreme RN black hole, which has a vanishing temperature, into a black hole
of non-vanishing temperature.
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2. A mean field theory for general relativity

LetM be a fixed manifold and let Ω be an arbitrary probability space. Let g(ω) be an ω-dependent Lorentzian metric
defined on M; let also A(ω) be an ω-dependent electromagnetic 4-potential, with associated current j(ω). Each triplet
S(ω) = (M, g(ω), A(ω)) represents a physical space–time depending on the random parameter ω ∈ Ω . For example,
g(ω)may represent a gravitational wave of random phase and wavevector around a given reference space–time.
With each space–time S(ω) are associated the Einstein tensor E(ω) of the metric g(ω), and a stress–energy tensor T (ω)

satisfying the Einstein equation

E(ω) = 8πT (ω). (1)

We write

T (ω) = T(A(ω),g(ω)) + Tm(ω), (2)

where T(A(ω),g(ω)) represents the electromagnetic stress–energy tensor generated by A(ω) in g(ω), and Tm(ω) represents the
stress–energy tensor of other matter fields.
It has been shown in [9] that such a collection of space–times can be used to define a single, mean or coarse grained

space–time (M, ḡ, Ā) representing the average, ‘‘macroscopic’’ behavior of these random space–times. Themetric ḡ and the
potential Ā are the respective averages of the metrics g(ω) and of the potentials A(ω) over ω; thus, for all points P ofM,

ḡ(P) = 〈g(P, ω)〉 (3)

and

Ā(P) = 〈A(P, ω)〉, (4)

where the brackets on the right-hand side indicate an average over the probability spaceΩ . If we think of g(ω) as a reference
metric perturbed by small random contributions, then ḡ will represent the averagemetric, where the fluctuations have been
smoothed out but with the same macroscopic behavior.
The metric ḡ defines an Einstein tensor Ē for the coarse grained space–time. However, since the expression for the

Einstein tensor as a function of the metric is nonlinear, this Einstein tensor and the average stress–energy tensor will, in
general, not be related by the Einstein equation:

Ē 6= 8π〈T (ω)〉

so physical measurements attempting to relate the coarse grained space–time to its average matter content would yield a
violation of the Einstein equation. This would not happen in a Newtonian setting since, then, the relation between field and
matter is linear and thus is unchanged under averaging.
To enforce validity of the Einstein equation for the coarse grained space–time, it is thus necessary to introduce a new

term:

T appαβ = Ēαβ /8π − 〈(Tm)
α
β(ω)〉 − T(Ā,ḡ)

α

β
, (5)

so that the stress–energy tensor of the coarse grained space–time can be described as the sum of the stress–energy tensor of
the average quadripotential Ā, of the average stress–energy tensor 〈(Tm)(ω)〉 appearing in the averaged space–times, and of
this new term T app. This generally non-vanishing tensor field can be interpreted as the stress–energy tensor of an ‘apparent
matter’ in the coarse grained space–time. This apparent matter describes the cumulative nonlinear effects of the averaged-
out small scale fluctuations of the gravitational and electromagnetic fields on the large scale behavior of the coarse grained
gravitational field.
In particular, even the vanishing of T (ω) for allω does not necessarily imply the vanishing of T̄ . Themean stress–energy

tensor T̄ can therefore be non-vanishing in regions where the unaveraged stress–energy tensor actually vanishes.
The Maxwell equation relating the electromagnetic potential to the electromagnetic current also couples the

electromagnetic field and the gravitational field non-linearly; the mean current j̄ associated with Ā in ḡ does not therefore
coincide with the average 〈j(ω)〉. In particular, a region of space–time where j(ω) vanishes for all ω is generally endowed
with a non-vanishing mean current j̄.
Let us finally mention that the averaging scheme just presented is the only one which ensures that motion in the mean

field can actually be interpreted, at least locally, as the average of ‘real’ unaveraged motions. This important point is fully
developed in [10].

3. Waves around a homogeneous isotropic simple cosmology

The averaging procedure above has been applied to background gravitational waves [11] propagating around a
homogeneous isotropic, spatially flat dust universe. The main conclusion is that the large scale effect of these gravitational
waves is close to that of a matter field with positive energy and pressure, whose order of magnitude is roughly n2ε2 where
n is the relative frequency of the waves and ε their relative amplitude. In particular, in some regimes this energy would be
comparable to that of the dust, even for some currently undetectable gravitational waves.
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