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a b s t r a c t

This paper is devoted to linear parameter systems under linear fractional representations
(LFR) of parameter-dependent nonlinear systems with real–rational nonlinearities and
point-delayed dynamics. The robust global asymptotic stability of the system either
independent of or dependent on the delay sizes is investigated. The associate matrix
inequalities are related to the time-derivatives of appropriate Lyapunov functions at all
the vertices of the polytope which contains the parameterized uncertainties.
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1. Introduction

Time-delay systems are very common in nature, for instance they are related to transportation problems, population
growth and signal transmission methods (see, for instance, [1–8] and references therein). The stability and stabilization of
those systems have been studied in the literature in connection, for instance, with the Lyapunov theory (see, for instance, [1–
5,19]) or frequency domain techniques (see, for instance, [2,7,8] and references therein). Some of the related results are
referred to either as being independent of the sizes of the delays or as dependent of those sizes. Within this last class
of results, those related to the characterization of the first interval of admissible delay sizes allowing stabilization, merit
special attention. On the other hand, the most involved group of results to obtain is that related to internal delays (i.e. in
the state) since its associate dynamics possess infinitely many modes in general, [2]. Continuous-time and discrete-time
systems involving delays have also been studied in [20–24]. In particular, semilinear partial functional differential equations
with infinite delays have been recently investigated in [20]. In [21], previous results concerning necessary and sufficient
conditions for global asymptotic stability of scalar difference equations with a single delay have been extended to second
order systems by using a general treatment for Difference Equations. See, for instance, [13,25] for general related results.
Periodic and non-oscillatory solutions of time-delay systemswere investigated in [22,23], respectively. In [23], the impulsive
case has been considered. In this paper, we consider a parameter-dependent (in general, nonlinear and time-varying) system
subject to a finite set of point delays which may be, in general, defined by real–rational nonlinearities, whose parameter
vector H∞ is restricted to lie in a polytope 2 ∈ Rn containing the origin, This is named the so-called polytopic-delayed
system following the nomenclature used for delay-free systems in [11,17]. As proposed in [11,17] for a delay-free system,
the results developed in the followingmight be still applied if the set2 is not a polytope after replacing it by some polytope
2poly ⊃ 2 (see also [9,10,14,16]). Themain arguments used to develop the formalism are based on the fact that the polytope
where the parameters belong to defines affine function matrices of vertices which may be calculated from those of the
original polytope2 ∈ Rn of parameterized uncertainties. The quadratic stability of the so-called delay-free polytopic system
has been investigated in [9–11]. The advantage of parameterizing uncertainties within polytopes is that conditions such
as for instance, slow time variation of the parameters are not required to investigate the stability, [16,17]. The existence
of Lyapunov functional candidates for the dynamic system is investigated through the derivation of matrix inequalities
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associated with the system and the Lyapunov functional candidate, [12,15,16,18]. Some related standard results have been
provided in [24]. In the following, the robust global asymptotic stability of such a polytopic-type-delayed system subject to
point delays is investigated via the Lyapunov theory.

1.1. Notation

Rm×n
(
Cm×n

)
is the set of real (complex) m × n matrices and P = PT > 0 stands for a real symmetric positive-definite

matrix.
- For a given set S, one defines σ S = {σ s : s ∈ S} if σ is a positive number.
- The convex hull of complexm× nmatrices, ϑi ∈ Cm×n is

Co {ϑ1ϑ2, . . . , ϑl} =

{
ϑ : ϑ =

l∑
i=1

λiϑi,

l∑
i=1

λi = 1, λi ≥ 0

}
- Im is them-identity matrix with the subscript being omitted if its size follows directly from context.
If 2 is a polytope containing the origin and ∆i (θ)

(
i = 0, r

)
, r ≥ 0 being an integer, are real-valued rational matrix

functions of any order of θ then 1i = {∆i (θ) θ ∈ 2} and 1 = 10 × 11 × · · · × 1r are polytopes of vi vertices ∆
(ki)
i ,

ki = 0, vi; i = 0, r; and ∆(k0,k1...,kr ) = ∆
(k0)
0 × · · · × ∆

(kr )
r , respectively, where ‘×’ denotes the Cartesian product of

matrices (considered as sets). In our context, 2 is the polytope where the system parameters belong to while 1i is the
polytope where the rational matrix function Ai (θ), defining the dynamics of the ith delay hi(A0 (θ)) describes the delay-free
dynamics; (i.e. h0 = 0) as the parameter vector θ runs over2; i = 0, r .

2. Linear fractional descriptions

Consider the parameter-dependent system subject to r point delays hi
(
i = 1, r

)
:

ẋ(t) =
r∑
i=0

Ai (θ(t)) x (t − hi)+ B (θ(t)) u(t) (1a)

y(t) = C (θ(t)) x (t)+ D (θ(t)) u(t) (1b)
where h0 = 0, x(t) ∈ Rn, u(t) ∈ Rnu , y(t) ∈ Rny are the state, input and measurable output signals, respectively, and
Ai
(
i = 0, r

)
, B, C and D are real-valued rational functions of time-varying parameter vector θ(t) with θ ∈ Θ for all t ≥ 0

with θ(t) = (θ1(t), θ2(t), . . . , θm(t))T such that the real vector associated function is defined in such a way that (1) has a
mild solution on [0, t) for all t ≥ 0 for any absolutely continuous functionϕ : [−h, 0]→ Rn of initial conditions x(t) ≡ ϕ(t),
t ∈ [−h, 0] with h = Max1≤i≤r (hi). One defines:
- The unforced system (1) is robustly globally asymptotically stable if ‖x(t)‖ is uniformly bounded and limt→∞ x(t) = 0

if u ≡ 0 for any bounded x(0). The system (1) is robustly stabilizable if there exists an output-feedback realizable control law
u (t) = K (y, θ(t), t) such that the closed-loop system is robustly globally asymptotically stable. For terminology simplicity,
since no confusion is expected, we refer in the sequel to robust global asymptotic stability simply as ‘‘robust stability’’.
- The robust stability (stabilizability) margin of (1) for an uncertainty set is σm (ρm) = Sup {σ(ρ)}: System (1) is robustly

stable (stabilizable) over γ2 for all γ ∈ [0, σ ] (γ ∈ [0, ρ]). Now, first consider the unforced version of (1) given by

ẋ(t) =
r∑
i=0

Ai (θ(t)) x (t − hi) ; y(t) = C (θ(t)) x (t) . (2)

First LFR: Since Ai (θ(t))
(
i = 0, r

)
is a real-valued rational matrix function of θ(t), the LFR description of each matrix

function Ai (θ(t)) exists for some appropriate matrices Aoi, Bqi, Dpqi
(
i = 0, r

)
:

Ai (θ(t)) = A0i + Bqi∆i (θ(t))
(
Idi − Dpqi∆i (θ(t))

)−1 Cpi (3)

for any ∆i(θ(t)) such that the well-posedness condition Det
(
Idi − Dpqi∆i (θ(t))

)
6= 0, ∀θ ∈ 2, all t ≥ 0 where Idi is the di

identity matrix
(
i = 0, r

)
. In the following, the explicit dependence of θ(t) on time is omitted in the notation for the shake

of simplicity when no confusion is expected. If (2) is quadratically stable then A0i
(
i = 0, r

)
are strictly Hurwitzian (i.e. with

all their eigenvalues in Re s< 0). A state-space realization of the state evolution of the dynamical system (2) using (3) is

ẋ(t) =
r∑
i=0

(
A0ix (t − hi)+ Bqiqi (t − hi)

)
pi(t) = Cpix (t)+ Dpqiqi(t) =

(
I − Dpqi∆i (θ)

)−1 Cpix(t)
qi(t) = ∆i (θ) pi(t) = ∆i (θ)

(
I − Dpqi∆i (θ)

)−1 Cpix(t)
∆i (θ) = Diag

(
θ1Is1i , . . . , θmIsmi

)
(4)
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