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a b s t r a c t

Plant breeding is an extremely important route to genetic improvements that can increase yield and plant
adaptability. Genetic improvement requires careful measurement of plant phenotypes or plant trait
characteristics, but phenotype measurement is a tedious and error-prone task for humans to perform.
High-throughput phenotyping aims to eliminate the problems of manual phenotype measurement. In
this paper, we propose and demonstrate the efficacy of an automatic corn plant phenotyping system
based on 3D holographic reconstruction. Point cloud image data were acquired from a time-of-flight
3D camera, which was integrated with a plant rotating table to form a screening station. Our method
has five main steps: point cloud data filtering and merging, stem segmentation, leaf segmentation, phe-
notypic data extraction, and 3D holographic visualization. In an experimental study with five corn plants
at their early growth stage (V3), we obtained promising results with accurate 3D holographic reconstruc-
tion. The average measurement error rate for stem major axis, stem minor axis, stem height, leaf area, leaf
length and leaf angle were at 7.92%, 15.20%, 7.45%, 21.89%, 10.25% and 11.09%, respectively. The most
challenging trait to measure was leaf area due to partial occlusions and rolling of some leaves. In future
work, we plan to extend and evaluate the usability of the system in an industrial plant breeding setting.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The growing world population and the lack of access to new
arable land needed to maintain agricultural sustainability (Araus
et al., 2008) is making plant breeding more important than ever
before, as it can increase crop yield and plant adaptability. Genetic
improvement in plant breeding focuses on exactly this problem,
through selection for desired plant phenotypes during the plant
breeding cycle (Poehlman and Sleper, 1995). Genetic improvement
requires careful measurement of plant phenotypes, which is a
tedious and error-prone task when done manually. High-through-
put phenotyping is a new technique that returns a large quantity of
data and addresses the problems of manual phenotyping, so it has
recently received a great deal of attention for the plant trait discov-
ery task (Cabrera-Bosquet et al., 2012; Furbank and Tester, 2011).
High-throughput phenotyping uses various technologies, such as

near-infrared spectroscopy spectral reflectance, photography, and
sonar. For example, Khanna et al. (2011) used several spectral anal-
yses to classify aquatic macrophytes species.

For many years, botanists have observed the structure of plants
and proposed many models to describe plant parts. Some models
describe overall structure, and some describe specific parts of
plants. Furthermore, visualization of plant models has also been
enhanced with computer graphics techniques. For example, Ijiri
et al. (2005) developed 3D simulation of inflorescences, Ding
et al. (2008) conducted 3D modeling of a plant structure, and Yao
et al. (2010) proposed a flower blooming 3D model. However, this
work has focused on general 3D models without exploiting the
unique phenotypic characteristics of specific plants. Some groups
of researchers produce 3D models of rice plant from images and
barley plants from 3D sensors (Wernecke et al., 2007; Watanabe
et al., 2005). Other researchers have developed methods for corn
phenotype discovery and 3D visualization. Dornbusch et al.
(2007) proposed a corn plant modeling procedure based on merg-
ing multiple 3D point cloud inputs and a mathematical model.
Although they achieved excellent results, they did not perform
automatic image capture and used only one single plant to demon-
strate the use of the model. de Moraes Frasson and Krajewski
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(2010) also developed a 3D digital model of corn plants, but their
method required attaching numerous markers to specific locations
on a plant. None of the systems described in the literature are
capable of fully automatic extraction of phenotypic data from their
3D models. The objective of the research reported upon in this
paper was to develop a fully automatic system that is capable of
characterizing corn plant morphological phenotypes in a con-
trolled setting in a high-throughput fashion. These data include
stem diameter, leaf length, leaf area, and leaf angle.

2. Materials and methods

An overview of our system is shown in Fig. 1. Our modeling
system interacts with a plant screening station consisting of a
time-of-flight (ToF) camera (SR-4000, MESA Imaging, Switzerland),
a turntable, a stepper motor, and a computer station. The modeling
system sends commands to the plant screening station, including
commands to precisely rotate the turntable and to acquire a 3D
point cloud at a specific viewing angle. After point cloud

acquisition, we perform point cloud data filtering, merging, stem
segmentation, leaf segmentation, phenotypic data extraction, and
3D holographic visualization. The output of each step is depicted
in Fig. 2.

Fig. 3 shows the experimental screening station, with the SR-
4000 camera facing the plant turntable. We performed an initial
calibration to identify the point ~p0 (the center of the turntable’s
coordinate system at the top of the plant pot) in the camera coor-
dinate system. The methods described in this report could be used
with some modification for corn plants at other growth stages (up
to V10, after which there will be tassels and fruits). For the purpose
of algorithm validation, five corn plants at the representative V3
growth stage were used.

2.1. Point cloud data filtering and merging

The point cloud data filtering and merging step comprised five
intermediate steps: acquiring input point clouds, filtering, rotation
and transform, fine alignment using the iterative closest point (ICP)
method, and filtering of the merged point cloud. The filtering, ICP,
and merged point cloud filtering steps made use of the Point Cloud
Library’s (PCL) built-in functions (Rusu and Cousins, 2011). Fig. 5
shows sample results for each intermediate step of the process.

2.1.1. Acquiring input point clouds
For each predefined acquisition angle, we sent a command to

rotate the turntable and then a command to acquire a 3D point
cloud. To ensure that the plant would settle from vibrations before
image acquisition, we inserted a one-minute interval between
turntable rotation and point cloud acquisition. The data from the
ToF camera were in an XYZ format according to the camera’s Carte-
sian coordinate system, depicted in Fig. 4. The result of this step
was a set of point clouds
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is the num-
ber of points in point cloud Phi ;1, and Nh is the total number of point
clouds (acquisition angles).

2.1.2. Filtering
The point clouds generated by the ToF camera normally

contained quite a few sparsely distributed outlier points. We used
the statistical filtering algorithm of Rusu et al. (2008), which
considers a point as either an inlier or an outlier based on the mean
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Fig. 1. Overview of the system, including screening system, modeling system, and
main steps in modeling system.

Fig. 2. Illustration of output of each main step in the modeling system.
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