Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

A general iterative algorithm for nonexpansive mappings in Hilbert spaces

Ming Tian

College of Science, Civil Aviation University of China, Tianjin 300300, PR China

Article history: Received 3 February 2010

ARTICLE INFO

Received 3 February 2010 Accepted 31 March 2010

MSC: 47H09 47H05 47H06 47J25 47J05

Keywords: Nonexpansive mappings Iterative method Variational inequality Fixed point Projection Viscosity approximation

1. Introduction

Let *H* be a real Hilbert space with inner product \langle , \rangle and induced norm $\| \cdot \|$. $T : H \to H$ is nonexpansive if $\|TX - Ty\| \le \|x - y\|$ for all $x, y \in H$. The set of fixed points of *T* is the set $F_{ix}(T) := \{x \in H : Tx = x\}$. We assume that $F_{ix}(T) \neq \phi$, it is well known that $F_{ix}(T)$ is closed convex.

Moudafi [1] introduced the viscosity approximation method for nonexpansive mappings. Let f be a contraction on H, starting with an arbitrary initial $x_0 \in H$, define a sequence $\{x_n\}$ recursively by

$$x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) T x_n, \quad n \ge 0,$$

(1)

where $\{\alpha_n\}$ is a sequence in (0, 1). Xu [2] proved that under certain appropriate conditions on $\{\alpha_n\}$, the sequence $\{x_n\}$ generated by (1) strongly converges to the unique solution x^* in *C* of the variational inequality

$$\langle (I-f)x^*, x-x^* \rangle \ge 0, \quad \text{for } x \in F_{ix}(T), \tag{2}$$

where $C = F_{ix}(T)$. We all know that iterative methods for nonexpansive mappings can be used to solve a convex minimization problem. See, e.g., [3–5] and the references therein. A typical problem is to minimize a quadratic function over the set of the fixed points of a nonexpansive mapping on a real Hilbert space H

$$\min_{x\in C} \frac{1}{2} \langle Ax, x \rangle - \langle x, b \rangle, \tag{3}$$

ABSTRACT

Let *H* be a real Hilbert space. Suppose that *T* is a nonexpansive mapping on *H* with a fixed point, *f* is a contraction on *H* with coefficient $0 < \alpha < 1$, and $F : H \to H$ is a *k*-Lipschitzian and η -strongly monotone operator with k > 0, $\eta > 0$. Let $0 < \mu < 2\eta/k^2$, $0 < \gamma < \mu(\eta - \frac{\mu k^2}{2})/\alpha = \tau/\alpha$. We proved that the sequence $\{x_n\}$ generated by the iterative method $x_{n+1} = \alpha_n \gamma f(x_n) + (I - \mu \alpha_n F)Tx_n$ converges strongly to a fixed point $\tilde{x} \in F_{ix}(T)$, which solves the variational inequality $\langle (\gamma f - \mu F)\tilde{x}, x - \tilde{x} \rangle \leq 0$, for $x \in F_{ix}(T)$.

© 2010 Elsevier Ltd. All rights reserved.

E-mail address: tianming1963@126.com.

 $^{0362\}text{-}546X/\$$ – see front matter S 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.03.058

where *C* is the fixed point set of a nonexpansive mapping *T* on *H* and *b* is a given point in *H*. Assume *A* is strongly positive bounded linear operator. That is, there is a constant $\bar{\gamma} > 0$ with the property

$$\langle Ax, x \rangle \ge \bar{\gamma} \|x\|^2$$
, for all $x \in H$. (4)

In [4], it is proved that the sequence $\{x_n\}$ defined by the iterative method below with the initial guess $x_0 \in H$ chosen arbitrarily,

$$x_{n+1} = \alpha_n b + (I - \alpha_n A)Tx_n, \quad n \ge 0, \tag{5}$$

converges strongly to the unique solution of the minimization problem (3) provided the sequence $\{\alpha_n\}$ satisfies certain conditions. Combining the iterative method (1) and (5), Marino and Xu [6] consider the following general iterative method:

$$x_{n+1} = \alpha_n \gamma f(x_n) + (I - \alpha_n A) T x_n, \quad n \ge 0, \tag{6}$$

it is proved that if the sequence $\{\alpha_n\}$ of parameters satisfies appropriate conditions, then the sequence $\{x_n\}$ generated by (6) converges strongly to the unique solution of the variational inequality

$$\langle (\gamma f - A)\tilde{x}, x - \tilde{x} \rangle \le 0 \quad x \in C, \tag{7}$$

which is the optimality condition for the minimization problem

$$\min_{x\in C}\frac{1}{2}\langle Ax,x\rangle-h(x)\rangle$$

where *h* is a potential function for γf (i.e., $h'(x = \gamma f(x)$ for $x \in H$)). Some people also study the applications of the iterative method (6) [7,8].

On the other hand, Yamada [5] introduced the following hybrid iterative method for solving the variational inequality

$$x_{n+1} = Tx_n - \mu\lambda_n F(Tx_n), \quad n \ge 0,$$
(8)

where *F* is *k*-Lipschitzian and η -strongly monotone operator with k > 0, $\eta > 0$, $0 < \mu < 2\eta/k^2$, then he proved that if $\{\lambda_n\}$ satisfying appropriate conditions, the $\{x_n\}$ generated by (8) converges strongly to the unique solution of variational inequality

$$\langle F\tilde{x}, x-\tilde{x}\rangle \geq 0, \quad x \in F_{ix}(T).$$

In this paper, we will combine the iterative method (6) with the Yamada's method (8) and consider the following general iterative method

$$x_{n+1} = \alpha_n \gamma f(x_n) + (I - \mu \alpha_n F) T x_n, \quad n \ge 0, \tag{9}$$

we will prove that if the sequence $\{\alpha_n\}$ of parameters satisfies appropriate conditions, then the sequence $\{x_n\}$ generated by (9) converges strongly to the unique solution $x^* \in C$ of the variational inequality

 $\langle (\gamma f - \mu F)\tilde{x}, x - \tilde{x} \rangle \leq 0, \text{ for } x \in C,$

where $C = F_{ix}(T)$, our results improve and extend the corresponding results given by Marino, Xu and Yamada.

2. Preliminaries

Throughout this paper, we write $x_n \rightarrow x$ to indicate that the sequence $\{x_n\}$ converges weakly to x. $x_n \rightarrow x$ implies that $\{x_n\}$ converges strongly to x. The following lemmas are useful for our paper.

Lemma 2.1 ([9]). Assume $\{a_n\}$ is a sequence of nonnegative real numbers such that

 $a_{n+1} \leq (1-\gamma_n)a_n + \delta_n, \quad n \geq 0,$

where $\{\gamma_n\}$ is a sequence in (0, 1) and $\{\delta_n\}$ is a sequence in \mathbb{R} such that

(i) $\sum_{n=1}^{\infty} \gamma_n = \infty$;

(ii) $\limsup_{n\to\infty} \sup_{n\to\infty} \delta_n / \gamma_n \le 0$ or $\sum_{n=1}^{\infty} |\delta_n| < \infty$. Then $\lim_{n\to\infty} a_n = 0$.

Lemma 2.2 ([10]). Let *H* be a Hilbert space, *K* a closed convex subset of *H*, and *T* : $K \to K$ a nonexpansive mapping with $F_{ix}(T) \neq \phi$, if $\{x_n\}$ is a sequence in *K* weakly converging to *x* and if $\{(I - T)x_n\}$ converges strongly to *y*, then (I - T)x = y.

The following lemmas are easy to prove.

Download English Version:

https://daneshyari.com/en/article/842397

Download Persian Version:

https://daneshyari.com/article/842397

Daneshyari.com