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a b s t r a c t

In this paper, we investigate the convergence of the time-dependent and non-isentropic
Euler–Maxwell equations to incompressible Euler equations in a torus via the combined
quasi-neutral and non-relativistic limit. For well prepared initial data, the convergences of
solutions of the former to the solutions of the latter are justified rigorously by an analysis
of asymptotic expansions and energy method.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

We investigate the non-relativistic limit problem for the (rescaled) non-isentropic Euler–Maxwell systems, which takes
the following (non-conservative) form [1–4]:

∂tn+ div (nu) = 0, (1.1)
∂tu+ (u · ∇)u+∇θ + θ∇ ln n+ u = −(E + γ u× B), (1.2)

∂tθ + u · ∇θ +
2
3
θdiv u =

1
3
|u|2 − (θ − θ∗), (1.3)

εγ ∂tE −∇ × B = γ nu, γ ∂tB+∇ × E = 0, (1.4)

εdiv E = b(x, t)− n, div B = 0, (1.5)

for (x, t) ∈ T 3 × [0, T ].
Here, n, u, θ denote the scaled macroscopic density, mean velocity vector and temperature of the electrons and E, B the

scaled electric field and magnetic field. They are functions of a three-dimensional position vector x ∈ T 3 and of the time
t > 0, where T 3 = ( R

2πZ )
3 is the three-dimensional torus. The function θ∗(x) is the ambient device temperature and b(x, t)

stands for the prescribed density of positive charged background ions (doping profile). The fields E and B are coupled to
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the particles through the Maxwell equations and act on the particles via the Lorentz force E + γ u× B. In the system (1.1)–
(1.5), j = nu stands for the current densities for the particles. Eqs. (1.1) and (1.2) are the mass and momentum balance laws
respectively, while (1.4) and (1.5) are theMaxwell equations. It is well known that divergence equations (1.5) are redundant
with Eqs. (1.4) as soon as they are satisfied by the initial data. However, we keep them in the systembecause this redundancy
may be lost in the asymptotic limit.
Physically, the dimensionless parameter ε and γ > 0 are proportional to the Debye length and 1

c can be chosen

independently on each other, according to the desired scaling (see [5]), where c = (ε0ν0)
−
1
2 is the speed of light, with

ε0 and ν0 being the vacuum permittivity and permeability. It is small compared to the physical size of the known variables.
Thus, the limit ε → 0 is called the quasi-neutral limitwhile the limit γ → 0 is called the non-relativistic limit. In the present
paper, we will concentrate on the so-called quasi-neutral regime. More precisely, we consider the combined quasi-neutral
and non-relativistic limit of the Euler–Maxwell system in the following scaling case:

γ = ε → 0. (1.6)

This scaling corresponds to a limit, without any magnetic field, coupled with a quasi-neutral limit.
There have been a lot of studies on the Euler–Poisson equations and their asymptotic analysis, in contrast to the case

for study of the Euler–Maxwell equations. See [5–14] and the references therein. The first mathematical study of the
Euler–Maxwell equations with extra relaxation terms is due to Chen et al. [15], where a global existence result for weak
solutions in one-dimensional case is established by the fractional step Godunov scheme together with a compensated
compactness argument. In 2003, J.W. Jerome established a local smooth solution theory for the Cauchy problem of
compressible Hydrodynamic-Maxwell systems (Ref. [3]) via amodification of the classical semigroup-resolvent approach of
Kato. Recently, the convergence of one-fluid (isentropic) Euler–Maxwell system to a compressible Euler–Poisson systemwas
proven by Peng andWang in [16] via the non-relativistic limit. Peng andWang also proved that the combinednon-relativistic
and quasi-neutral limit is the (isentropic) incompressible Euler equation in a uniform background of non-moving ions with
fixed unit density (see [17]). Furthermore, Peng and Wang derive incompressible e-MHD equations from compressible
Euler–Maxwell equations via the quasi-neutral regime (see [18]). Yang and Wang [19,20] study the asymptotic limit of
the two-fluid Euler–Maxwell system and non-isentropic Euler–Maxwell system via a non-relativistic regime.
The aim of this paper is to study the combined quasi-neutral and non-relativistic limit by the method of asymptotic

expansions to the Cauchy problem for the multidimensional non-isentropic Euler–Maxwell models for plasmas or
semiconductors. We formally derive an incompressible type of non-isentropic Euler system for electron velocity, entropy
and the electrostatic potential. Noting that the ion density is constant, the limits of the electron velocity, entropy and
the electrostatic potential satisfy the classical incompressible non-isentropic Euler equations. Under the assumption that
the initial densities satisfy certain compatibility conditions which guarantee that no initial layer is formed, we obtain the
existence of the asymptotic expansion and rigorously justify the formal limit for a periodic initial value by adapting the
approach developed in [21–23]. The uniform error estimates are given with respect to γ (or ε) for each variable. It is noted
that the initial value of the electron density cannot be given arbitrarily, and it should be determined by the initial data for
the velocity, temperature and electric potential.
This remainder of this paper is organized as follows. In the next section, by means of formal asymptotic analysis we

derive non-isentropic Euler equations of an incompressible type for the leading profiles of the expansion and corresponding
linearized equations for the other profiles. In Section 3, the existence of the expansion is proved by solving an incompressible
type Euler equation and linearized equations. Section 4 is devoted to rigorously justifying the asymptotic expansions
developed in Section 2 up to any order under the condition that the initial expansions are well prepared, which excludes
the formation of initial layers.
Notation and preliminary results

(1) Throughout this paper, ∇ = ∇x is the gradient, α = (α1, . . . , αd) is a multi-index and Hs(T 3) denotes the standard
Sobolev space in torus T 3, which is defined by a Fourier transform, namely, f ∈ Hs(T 3) if and only if

‖f ‖2s = (2π)
d
∑
k∈Zd

(1+ |k|2)s|(F f )(k)|2 < +∞,

where (F f )(k) =
∫

T 3 f (x)e
−ikxdx is the Fourier transform of f ∈ Hs(T 3). Note that if

∫
T 3 f (x)dx = 0, then ‖f ‖L2(T 3) ≤

‖∇f ‖L2(T 3).
(2) Recall the following basic Moser-type calculus inequalities [24–26]: for f , g, v ∈ Hs and any non-negative multi-index

α, |α| ≤ s,

(i) ‖Dαx (fg)‖L2 ≤ Cs(‖f ‖L∞‖D
s
xg‖L2 + ‖g‖L∞‖D

s
xf ‖L2), s ≥ 0; (1.7)

(ii) ‖Dαx (fg)− fD
α
x g‖L2 ≤ Cs(‖Dxf ‖L∞‖D

s−1
x g‖L2 + ‖g‖L∞‖D

s
xf ‖L2), s ≥ 1. (1.8)

(3) (Sobolev’s inequality.) For s > d
2 , ‖f ‖L∞ ≤ Cs‖f ‖s.

(4) If s > d
2 , then for f , g ∈ H

s and |α| ≤ s, ‖Dαx (fg)‖L2 ≤ Cs‖f ‖s‖g‖s.
(5) The same letter C denotes various positive constants which do not depend on t, τ and the initial data.



Download English Version:

https://daneshyari.com/en/article/842421

Download Persian Version:

https://daneshyari.com/article/842421

Daneshyari.com

https://daneshyari.com/en/article/842421
https://daneshyari.com/article/842421
https://daneshyari.com

