Contents lists available at ScienceDirect

### Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

# $\mathcal{T}$ -class algorithms for pseudocontractions and $\kappa$ -strict pseudocontractions in Hilbert spaces

#### Jean-Philippe Chancelier\*

Cermics, École Nationale des Ponts et Chaussées, 6 et 8 avenue Blaise Pascal, 77455, Marne la Vallée, Cedex, France

#### ARTICLE INFO

Article history: Received 2 June 2008 Accepted 29 April 2009

Keywords: Nonexpansive mappings Viscosity approximation Fixed points

#### ABSTRACT

In this paper we study iterative algorithms for finding a common element of the set of fixed points of  $\kappa$ -strict pseudocontractions or finding a solution of a variational inequality problem for a monotone, Lipschitz continuous mapping. The last problem being related to finding fixed points of pseudocontractions. These algorithms were already studied in [G.L. Acedo, H.-K. Xu, Iterative methods for strict pseudo-contractions in hilbert spaces, Nonlinear Analysis 67 (2007) 2258–2271] and [N. Nadezhkina, W. Takahashi, Strong convergence theorem by a hybrid method for nonexpansive mappings and lipschitz-continuous monotone mappings, SIAM Journal on Optimization 16 (4) (2006) 1230–1241] but our aim here is to provide the links between these known algorithms and the general framework of T-class algorithms studied in [H.H. Bauschke, P.L. Combettes, A weak-tostrong convergence principle for fejér-monotone methods in hilbert spaces, Mathematics of Operations Research 26 (2) (2001) 248–264].

© 2009 Elsevier Ltd. All rights reserved.

#### 1. Introduction

Let *C* be a closed convex subset of a Hilbert space  $\mathcal{H}$  and  $P_C$  be the metric projection from  $\mathcal{H}$  onto *C*. A mapping  $Q : C \mapsto C$  is said to be a *strict pseudocontraction* if there exists a constant  $0 \le \kappa < 1$  such that:

$$\|Qx - Qy\|^{2} \le \|x - y\|^{2} + \kappa \|(I - Q)x - (I - Q)y\|^{2},$$
(1)

for all  $x, y \in C$ . A mapping Q for which (1) holds is also called a  $\kappa$ -strict pseudocontraction. As pointed out in [1], iterative methods for finding a common element of the set of fixed points of strict pseudocontractions are far less developed than iterative methods for nonexpansive mappings ( $\kappa = 0$ ). Our main goal in this paper is to show that two specific algorithms studied in [1] and [2] can be linked to a general class of algorithms, called  $\mathcal{T}$ -class algorithms, and previously studied in [3]. For that purpose we slightly extend the  $\mathcal{T}$ -class definition. Thus, we do not provide new algorithms and new convergence theorems, but extend the scope of algorithms covered by the  $\mathcal{T}$ -class framework. Section 2 is devoted to the case  $0 \le \kappa < 1$  and considers Algorithm 1 studied in [1] rephrased as a  $\mathcal{T}$ -class algorithm. Section 3 is devoted to the case  $\kappa = 1$  for which the previous algorithm cannot be used. A mapping A for which (1) holds with  $\kappa = 1$  is called *pseudocontractive*. We will see that *pseudocontractive* mappings are related to monotone Lipschitz continuous mappings. A mapping  $A : C \mapsto \mathcal{H}$  is called *monotone* if

 $\langle Au - Av, u - v \rangle \ge 0$  for all  $(u, v) \in C^2$ .

A is called k-Lipschitz continuous if there exists a positive real number k such that

 $||Au - Av|| \le k||u - v||$  for all  $(u, v) \in C^2$ .





<sup>\*</sup> Corresponding author. Tel.: +33 1 64153638; fax: +33 1 64153586. *E-mail address:* jpc@cermics.enpc.fr.

<sup>0362-546</sup>X/\$ – see front matter s 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2009.04.049

Let the mapping  $A : C \mapsto \mathcal{H}$  be monotone and Lipschitz continuous. The variational inequality problem is to find a  $u \in C$  such that

$$\langle Au, v - u \rangle \ge 0$$
 for all  $v \in C$ .

. .

The set of solutions of the variational inequality problem is denoted by VI(C, A).

Assume that a mapping  $Q : C \mapsto C$  is pseudocontractive and *k*-Lipschitz continuous. Then, the mapping A = I - Q is monotone and (k + 1)-Lipschitz continuous and moreover Fix(Q) = VI(C, A) [2, Theorem 4.5], where Fix(Q) is the set of fixed points of Q. That is

$$Fix(Q) \stackrel{\text{def}}{=} \{x \in C : Qx = x\}.$$
(2)

Thus, to cover the case  $\kappa = 1$ , we investigate algorithms which aim at computing  $P_{VI(C,A)}x$  for a monotone and *k*-Lipschitz continuous mapping *A*. We will, in Section 3, mainly use results from [2] to prove that the general algorithm used in [2] can be rephrased in a slightly extended  $\mathcal{T}$ -class algorithm framework.

#### 2. $\mathcal{T}$ -class iterative algorithm for a sequence of $\kappa$ -strict pseudocontractions

Let  $(Q_n)_{n\geq 0}$  be a sequence of  $\kappa$ -strict pseudocontractions for  $\kappa \in [0, 1)$  and  $(\alpha_n)_{n\geq 0}$  a sequence of real numbers chosen so that  $\alpha_n \in (\kappa, 1)$ . We consider, as in [1], the following algorithm:

**Algorithm 1.** Given  $x_0 \in C$ , we consider the sequence  $(x_n)_{n \ge 0}$  generated by the following algorithm:

$$y_n = \alpha_n x_n + (1 - \alpha_n) Q_n x_n,$$
  

$$C_n \stackrel{\text{def}}{=} \{ z \in C \mid \|y_n - z\|^2 \le \|x_n - z\|^2 - (1 - \alpha_n) (\alpha_n - \kappa) \|x_n - Q_n x_n\|^2 \},$$
  

$$D_n \stackrel{\text{def}}{=} \{ z \in C \mid \langle x_n - z, x_0 - x_n \rangle \ge 0 \},$$
  

$$x_{n+1} = P_{(C_n \cap D_n)} x_0.$$

We will show that this algorithm belongs to the  $\mathcal{T}$ -class algorithms as defined in [3] and deduce its strong convergence to  $P_F x_0$  when  $F \neq \emptyset$  and where  $F \stackrel{\text{def}}{=} \bigcap_{n \ge 0} Fix(Q_n)$ .

For  $(x, y) \in \mathcal{H}^2$ , define the mapping *H* as follows:

$$H(x,y) \stackrel{\text{def}}{=} \{ z \in \mathcal{H} \mid \langle z - y, x - y \rangle \le 0 \}$$
(3)

and denote by Q(x, y, z) the projection of x onto  $H(x, y) \cap H(y, z)$ . Note that  $H(x, x) = \mathcal{H}$  and for  $x \neq y$ , H(x, y) is a closed affine half space onto which y is the projection of x.

**Lemma 2.** The sequence generated by Algorithm 1 coincides with the sequence given by  $x_{n+1} = Q(x_0, x_n, T_n x_n)$  with:

$$T_n(x) \stackrel{\text{def}}{=} \frac{x + R_n x}{2} + \frac{1}{2} \left( \frac{\kappa - \alpha_n}{1 - \alpha_n} \right) (x - R_n x), \quad and \quad R_n(x) \stackrel{\text{def}}{=} \alpha_n x + (1 - \alpha_n) Q_n(x).$$
(4)

Moreover, we have:

$$2T_n - I = \kappa I + (1 - \kappa)Q_n x.$$
<sup>(5)</sup>

**Proof.** Let  $\kappa \in [0, 1)$ ,  $\alpha \in (\kappa, 1)$ ,  $y \stackrel{\text{def}}{=} \alpha x + (1 - \alpha)Qx$  for  $\kappa$ -strict pseudocontraction Q and define  $\Gamma(x, y)$  as follows:

$$\Gamma(x, y) \stackrel{\text{def}}{=} \left\{ z \in \mathcal{H} \mid \|y - z\|^2 \le \|x - z\|^2 - (1 - \alpha)(\alpha - \kappa)\|x - Qx\|^2 \right\}.$$
(6)

We first prove that  $\Gamma(x, y) = H(x, Tx)$  where *T* is defined by Eq. (4).

$$\begin{split} \|y - z\|^2 - \|x - z\|^2 &\leq -(1 - \alpha)(\alpha - \kappa)\|x - Qx\|^2 \\ \Leftrightarrow \langle y - z, y - z \rangle - \|x - z\|^2 &\leq -(1 - \alpha)(\alpha - \kappa)\|x - Qx\|^2 \\ \Leftrightarrow \langle y - x, y - z \rangle + \langle x - z, y - z \rangle - \|x - z\|^2 &\leq -(1 - \alpha)(\alpha - \kappa)\|x - Qx\|^2 \\ \Leftrightarrow \langle y - x, y - z \rangle + \langle x - z, y - x \rangle &\leq -(1 - \alpha)(\alpha - \kappa)\|x - Qx\|^2 \\ \Leftrightarrow \langle y - x, y - z \rangle + \langle x - z, y - x \rangle &\leq (\alpha - \kappa)\langle y - x, x - Qx \rangle \\ \Leftrightarrow \langle y - x, y + x - 2z + (\kappa - \alpha)(x - Qx) \rangle &\leq 0 \\ \Leftrightarrow \left\langle y - x, y + x - 2z + \left(\frac{\kappa - \alpha}{1 - \alpha}\right)(x - y)\right\rangle &\leq 0 \end{split}$$

Download English Version:

## https://daneshyari.com/en/article/842482

Download Persian Version:

https://daneshyari.com/article/842482

Daneshyari.com