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The cancer stem cell model postulates that tumors are hierarchically organizedwith aminor population, the can-
cer stem cells, exhibiting unlimited proliferative potential. These cells give rise to the bulk of tumor cells, which
retain a limited ability to divide.Without successful targeting of cancer stem cells, tumor reemergence after ther-
apy is likely. However, identifying target pathways essential for cancer stem cell proliferation has been challeng-
ing. Here, using a transcriptional network analysis termed GAMMA, we identified 50 genes whose correlation
patterns suggested involvement in cancer stem cell division. Using RNAi depletion, we found that 21 of these tar-
get genes showed preferential growth inhibition in a breast cancer stem cell model. More detailed initial analysis
of 6 of these genes revealed 4 with clear roles in the fidelity of chromosome segregation. This study reveals the
strong predictive potential of transcriptional network analysis in increasing the efficiency of successful identifi-
cation of novel proliferation dependencies for cancer stem cells.

© 2017 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:
Cancer stem cells
Breast cancer
Mitosis
Cell cycle
Chromosome instability
Cell division

1. Introduction

The cancer stem cell (CSC) theory posits that, in at least some can-
cers, tumor cells are arranged in a hierarchical lineagewith aminor pop-
ulation, the CSCs, capable of unlimited proliferation while the bulk of
the tumor is comprised of partially differentiated cells with limited abil-
ity to divide (Shackleton et al., 2009). A consequence is that only a sub-
set of tumor cells, the CSCs, have the ability to generate tumors when
transplanted (Bonnet and Dick, 1997; Al-Hajj et al., 2003; O'Brien et
al., 2007). A corollary of the CSC theory is that eradicating tumors and
preventing recurrence requires elimination of CSCs. However, identify-
ing specific pathways to target CSC's has been a difficult challenge.
Therefore, we used a transcriptional network algorithm called
GAMMA to identify novel candidate targets, then tested the effects of
depleting their expression in an established CSC model system.

Cell division is essential for tumor growth. The core pathways that
mediate division are highly conserved from lower eukaryotes to mam-
mals. However, mammals have evolved supplemental pathways. Pro-
teins that participate in these supplemental pathways may be
generally dispensable for the division in normal cells but may promote
the fidelity of chromosome segregation. However, through mutation
and epigenetic changes that accompany tumorigenesis, these pathways

may become essential for cancer cell proliferation. This idea is support-
ed by the fact that at least some cancers are highly vulnerable to inhibi-
tion of certainmitotic regulators (Mita et al., 2008; Perez de Castro et al.,
2007). In brief, CSCs may become “addicted” to certain supplementary
cell division pathways. Our goal was to test if our bioinformatic analysis
could identify components of these pathways whose depletion would
inhibit CSC growth.

2. Materials and methods

2.1. Cell culture

BPLE, BPLER, HMLE and HMLER cells (generously provided by Drs.
Fabio Petrocca and Robert A.Weinberg,Massachusetts Institute of Tech-
nology) were maintained in WIT-T culture medium (Cellaria). All cell
lines were maintained in 75 cm2 filter flasks in a humidified incubator
at 37 °C with 5% CO2. Cell lines were screened for mycoplasma by fixing
cells on coverslipswith 3:1methanol:acetic acid and labelingwith 1 μg/
ml DAPI. Observation by fluorescence microscopy confirmed that all
lines were free of mycoplasma contamination.

2.2. siRNA screen

2.2.1. Cell culture
Cellswere passaged by trypsinization (0.05% trypsin, 0.53mMEDTA,

0.085% PBS). Optimal initial cell density was empirically determined as
one that would be near confluency after a 7-day incubation, without
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overgrowth. Cells were plated with 100 μl of media in quadruplicate at
800, 600, 500, 400 and 300 cells/well for BPLE and BPLER and 600, 500,
400, 300 and 200 cells/well for HMLE and HMLER. 100 μl of media were
added after 2 days to mimic experimental treatments. Cells were fixed,
permeabilized, stained and read 7 days after initial plating. Optimal ini-
tial concentrations were 600 cells/well for BPLE and BPLER and 500
cells/well for HMLE and HMLER (Fig. S1).

2.2.2. Transfections
Transfections were carried out using Lipofectamine RNAiMax

(Invitrogen) 2 days after plating. siRNAs (Bioneer) were suspended in
RNAse-free H2O at a concentration of 4 μM. 1–3 siRNAs were combined
for each gene target (Table S1). Transfections were carried out in qua-
druplicate with 0.5 μl (10 nM) siRNA mix used for each well and stan-
dard Lipofectamine RNAiMax protocol was followed. Transfection mix
wasmade up in 100 μl of WIT-T media and added to each well bringing
the total volume of the well to 200 μl of media.

To identify the optimal starting siRNA concentration BPLER cells
were transfected in quadruplicate with 50 nM, 40 nM, 30 nM, 20 nM
and 10 nM concentrations of siRNA targeting luciferase (negative con-
trol) and PLK1 (positive control). 10 nM luciferase siRNA transfection
showed minimal growth inhibition and 10 nM PLK1 siRNA transfection
had approximately the same level of inhibition as higher concentrations
(Fig. S2A). This was repeated in all 4 cell lines with similar results (Fig.
S2B).

2.2.3. Growth assays
Five days after transfection, themedia was removed from each well,

and cells were treated with 100 μl of 1% paraformaldehyde in PHEM
buffer (60 mM PIPES, pH 6.9, 25 mM HEPES, 10 mM EGTA, 4 mM
MgCl2) containing 0.05% Triton x-100 and 1:1000 dilution of commer-
cial SYBRGold stock solution to fix and permeabilize the cells and label
DNA. Plates were then incubated for 30 min and read on a Genios
plate reader (Tecan) with the following settings: gain @ Optimal, 10
flashes/well, (FITC filter set), read from bottom, Lag 0, Integration 40.
Growthwas normalized bydividing the cell count of eachwell to the av-
erage of the control wells. 3 replicate experiments were performed for
each cell line. After expression normalization, the Bioconductor package
limma (http://www.bioconductor.org/packages/release/bioc/html/
limma.html) was used to determine genes that showed significant dif-
ferential expression under experimental conditions and cell types. A lin-
earmodelwasfitted to the expression data for each probe.Moderated t-
statistics were computed by empirical Bayes shrinkage of the standard
errors toward a common value. The p-values corresponding to themod-
erated t-statistics were adjusted for multiple testing by computing false
discovery rates (fdr) using the method of Benjamini, Hochberg, and
Yekutieli (Benjamini and Yekutieli, 2001). We used both fdr and fold
change to select differentially expressed genes by requiring at least a
twofold change (log2[fold] ≥ 1) and fdr ≤ 0.05.

Cell countswere determined using cell line specific equations gener-
ated by standard curves. Known cell counts ranging from1250 to 35,000
cells/well were plated in quadruplicate and incubated at 37 °C for 10 h
to allow cells to settle. The average fluorescent intensity was plotted
against cell count and the resulting equation was used to extrapolate
the cell count from the measured fluorescent intensity in the experi-
mental groups (Fig. S3).

2.3. Cell cycle analysis

2.3.1. Immunolabeling
Cells were seeded on 25 mm coverslips in 6-well plates at approxi-

mately 12% confluency with 2 ml of media and transfected with
30 nM siRNA 24 h later. After another 48 h, cells were fixed in 1.5% %
paraformaldehyde in PHEM buffer containing 0.05% Triton-X 100 solu-
tion for 15 min. Coverslips were blocked with 20% Boiled normal goat
serum (BNGS) in MBST (10 mM MOPS, 150 mM NaCl, 0.05% Tween

20) for 20 min. Mouse anti-γTubulin antibody (Sigma: T5326) in
MBST with 5% BNGS was applied overnight at 4 °C. Coverslips were
washed 3 times with PBST for 5 min and labeled with FITC-conjugated
Goat anti-mouse secondary antibody (Jackson Immunoresearch: 115-
096-062) at 5 μg/ml in MBSTwith 5% BNGS for 60min at room temper-
ature. Coverslips were then washed 3 times in PBST and labeled with
0.05 μg/ml DAPI in water for 3 min. Coverslips were washed with
water and thenmounted on slides with 9 μl vectashield (Vector labora-
tories) containing 1 mM MgSO4 and the edges of the coverslip sealed
with nail polish.

2.3.2. Cell cycle profiling
100 fields on each coverslip were imagedwith a 15-plane z-series at

0.25 μm steps spanning the chromatin. Each z-series was summed, and
individual nuclei were counted and analyzedwithMetamorph software
(Molecular Devices) using the cell cycle plugin. Intensity gates for scor-
ing cells in G1, S, G2/M were established in the control and applied to
each of the experimental sets.Mitotic indiceswere determined byman-
ually counting the proportion of cells containing condensed
chromosomes.

3. Results and discussion

3.1. A bioinformatics approach to candidate identification

Stem-cell mitotic regulators remain poorly characterized, and their
identification is complicated by several factors. First, stem cells are a
minor population of the dividing cells within a tissue or tumor. Second,
accessorymitotic regulatorsmaybedifficult to discern because their de-
pletion only decreases the very high fidelity of chromosome segregation
but are not indispensable for the division process itself. Third, proteins
may have evolved functions in multiple areas of cell cycle control or
cell physiology, making the characterization of their rolesmore difficult.
To address these challenges, we used a predictive algorithmcalled Glob-
al Microarray Meta-Analysis (GAMMA) to identify candidate stem cell
mitotic regulators. GAMMA is a bioinformatics approach that uses pub-
lic microarray and RNAseq datasets fromNCBI's Gene Expression Omni-
bus (GEO) repository to identify transcripts that are correlated across
many experimental conditions (Wren, 2009; Dozmorov et al., 2011).
Using a “guilt by association” principle, groups of transcripts that are
highly correlated with each other are likely to share similar biological
associations, such as playing a role in the same disease or phenotype,
and being involved in the same pathway. Using a k-Nearest Neighbors
approach, GAMMA identifies the 40 most correlated transcripts for
each gene, then uses literature mining to identify what the correlated
genes have in common in MEDLINE, in terms of their being co-men-
tioned with diseases, phenotypes, chemicals, and other genes (Wren
et al., 2004). GAMMA has been successfully validated in several studies
(Towner et al., 2013a; Towner et al., 2013b; Clemmensen et al., 2012;
Lupu et al., 2011; Daum et al., 2009). Selecting for high GAMMA scores
in genes related to cancer, stem cells, andmitosis, we evaluated 50 can-
didate genes with minimal previous characterization (Table 1).

3.2. siRNA screen of BPLER and BPLE

A significant challenge in identifying gene dependence in CSCs is the
lack of reliable experimental comparisons in growth assays. When
tumor cells are placed in culture, growth rates of various subpopulations
of cancer cells may varywildly as cultures are often heterogeneous. Fur-
thermore, although CSC populations have been successfully isolated by
fluorescence-activated cell sorting (FACS), these populations quickly
lose their stem cell characteristics and differentiate in culture
(Fillmore and Kuperwasser, 2008). To address these problems, we fo-
cused on BPLER cells, a tumorigenic cell line derived from normal breast
epithelium sequentially transformed with SV40LT, hTERT and hRAS
(V12) (Ince et al., 2007). These were compared with non-tumorigenic
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