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1. Introduction

As Reich and Shafrir [1] have suggested, some kinds of hyperbolic spaces can be a suitable context for some notions
in nonlinear analysis. Kirk has proposed in [2] that the complete CAT(0) spaces (usually called Hadamard spaces) can be
successfully applied for this purpose, and has generalized some fixed point theorems to Hadamard spaces. A Hadamard space
is a complete metric space (X, d) which is satisfied in the following condition.

CAT(0)-INEQUALITY: For every two points Xq, x; € X and for every 0 < t < 1 there exists some x; € X such that

d* (v, %) < (1 = O)d* (¥, %) + td*(y, x1) — t(1 — O)d*(xg, x1) (¥ € X). (1)

For other equivalent definitions and basic properties, we refer the reader to standard texts such as [3-5]. In this paper, we
generalize the notion of subdifferential for proper, semicontinuous, convex functions on Hadamard spaces. To this end, we
introduce a dual space X* for a Hadamard space X, based on the recent work of Berg and Nikolaev [6]. It is well known that
a normed linear space satisfies CAT(0)-inequality if and only if it is a pre-Hilbert space, hence it is not so unusual to have an
inner product-like notion in Hadamard spaces. Berg and Nikolaev in [6,7] have introduced the concept of quasilinearization

along these lines. Let us formally denote a pair (a, b) € X x X by % and call it a vector. Then quasilinearization is defined
asamap (,) : X x X) x (X x X) — R defined by

- — 1, 1, 1, 1,
(ab, cd) = Ed (a,d) + Ed (b, c) — Ed (a,c) — Ed (b,d) (a,b,c,deX). (2)
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We say that X satisfies the Cauchy-Schwarz inequality if

- -
(ab, cd) < d(a, b)d(c,d) (a,b,c,deX). (3)

Berg and Nikolaev have then proved the following result [6, Corollary 3].

Theorem 1.1. A geodesically connected metric space is CAT (0)-space if and only if it satisfies the Cauchy-Schwarz inequality.

Also, we can formally add compatible vectors, more precisely x_>y + }72> = x_z>, forall x, y, z € X. For more details see [6].
The efficient domain of a function f : X — (—o0, +00]is D(f) = {x € X : f(X) < 400} and the closure of aset A C X is
denoted by clA.

2. Dual space
In order to define the conjugate space of a Hadamard space X, consider the map ® : R x X x X — C(X) defined by

- =
O(t,a, b)(x) =t(ab, ax) (t €R,a,b,x €X) (4)

where C(X, R) is the space of all continuous real-valued functions on X. Then the Cauchy-Schwarz inequality implies that

O(t, a, b) is a Lipschitz function with Lipschitz semi-norm L(©®(t, a, b)) = td(a,b), forallt € Rand a,b € X, where
Lip) = sup{%}“/’)@); X,y € X,x # y} is the Lipschitz semi-norm, for any function ¢ : X — R. Now, we introduce the
pseudometricDon R x X x X by

D((t,a,b),(s,c,d) =L(O(t,a,b)—O(,c,d) (t,seR,a,b,c,deX). (5)

. P e - =
Lemma 2.1. D((t, a, b), (s,c,d)) = Oifand only if t(ab, xy) = s(cd, xy), forallx,y € X.

Proof. By (4) and (5) and definition of Lipschitz semi-norm, D((t, a, b), (s, ¢, d)) = 0 if and only if there exists a constant
— —
k € R such thatt(ab, E)c) =s(cd, 54)) + k, for all x € X. Therefore, forallx, y € X,

t(ab, %9) = t(ab, @) — t(ab, G) = s{cd. ) — s(cd, &) = s(cd, ).
e e - =
Conversely, if t(ab, xy) = s(cd, xy), forallx, y € X, then
O(t,a,b)(x) = t(ab, &) = s(cd, &) = O(s, ¢, )(x) — s(cd, @)

for all x € X, which yields D((t, a, b), (s,c,d)) =0. O

Definition and Notation 2.2. For a Hadamard space (X, d), the pseudometric space (R x X x X, D) can be considered as
a subspace of the pseudometric space (Lip(X, R), L) of all real-valued Lipschitz functions. Also, D defines an equivalence
relation on R x X x X, where the equivalence class of (t, a, b) is

[tab] = (scd: t(ab, X)) = s(cd. ) (x,y € X)).
The set X* := {[t%]; (t,a,b) € R x X x X} is a metric space with metric D, which is called the dual metric space of
X, ad).
Let us observe that if X is a closed and convex subset of a Hilbert space # with non-empty interior, then X* = #. Without
—
loss of generality let B.(0) C X, for some € > 0, and define the map ¢ : # — X* by (x) = @ [oi], for x # 0, and

2||x]|
1(0) = 0. We claim that ¢ is a surjective isomorphism. First observe that

Y Y L < S S
D(L(x),t(y))—L<O< c ’O’2||x||> O( € ’O’2||J’||>>

B :I(X-u—y-u)—(X-v—y-v)l}
= sup
uv lu—vl
C [lk=p - w=wl]
=sup} ———— 1 = lx =y,
u#v ”u_v”

foreachx # 0,y # 0, and

D _ ( (ZIIXII €x ))_ :I(X-U—J/-u)l}_ :Ix-wl}_
®),0)=L{O| —,0,— ] =supy——————— ¢ =sup ) ——— = [Ix]|,
€ 2]l utv llu—vll w0 | [lwl]

for each x # 0.



Download English Version:

https://daneshyari.com/en/article/842650

Download Persian Version:

https://daneshyari.com/article/842650

Daneshyari.com


https://daneshyari.com/en/article/842650
https://daneshyari.com/article/842650
https://daneshyari.com

