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a b s t r a c t

We present three results related with the regularity of solutions of the almost cubic NLS.
In the first one, following Ozawa’s idea, we establish mass and energy conservation for the
solutionswithout regularizing the initial datum. Our second result is theHswell-posedness
for the Cauchy problem for 0 < s < 1. Finally, we show that the same solutions are also in
some Bourgain spaces for possibly a smaller time interval. In all of our results, the non-local
nonlinear term in the equation is shown to act like a cubic nonlinearity on the appropriate
Sobolev and Besov spaces.

Crown Copyright© 2009 Published by Elsevier Ltd. All rights reserved.

1. Introduction

The study of the almost cubic nonlinear Schrödinger (ACNLS) equationswas initiated in thework of Eden and Kuz [1]. The
study of this class of equationswasmotivated by a problem relatedwith a Generalized Davey–Stewartson (GDS) system that
is posed in Babaoğlu, Eden and Erbay [2]. In the purely elliptic case of the GDS system, the analysis done in that work failed
to classify the focusing and defocusing cases of the equations. ACNLS equation was introduced with the hope of resolving
this problem. The question was finally settled in Eden, Gürel and Kuz [3]. These results extend the classical ones for the
usual cubic nonlinear Schrödinger (NLS) equations in two space dimensions. The similarities between the ACNLS and the
usual NLS equations are yet to be further explored. In this note we try to take some further steps in that direction. Our aim
in this note is threefold, first we show that the idea of Ozawa [4] for obtaining the conservation of mass and energy for
the solutions without regularizing the data and the equations still applies to the ACNLS. The idea of Ozawa basically is to
look at the solution as the fixed point of the appropriate map and perform the regularization within the map. As will be
the theme in all the other parts of our paper the non-local nonlinearity that appears in the ACNLS equation has almost the
same behaviour on function spaces as the local cubic nonlinearity and this might be putting our terminology almost cubic
in jeopardy. Some of these estimates were already noted in [1] with (3.1), (3.6) and (3.7) and will be used in the second
section. In the third section, we derive estimates for the non-local nonlinearity acting on Besov spaces. These estimates are
enough to implement the idea of Cazenave–Weissler [5] for the local Hs well-posedness, Theorem 3.1. In the last section,
we consider further regularity properties of the solutions with initial value in Hs in the spirit of Bourgain [6]. We prove in
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Theorem 4.3 that the solutions really reside in the Bourgain dispersive spaces. These results can be considered as a prelude
for possible scattering results for Hs solutions for s close to 1 as it is done in Bourgain in [6] (see also Guo and Cui [7]).
The notation to be used throughout the text is as follows: For k ∈ Z, p ≥ 1, W k,p = W k,p(R2;C). Hk is used instead

of Hk(R2;C) when p = 2. (·, ·)L2 denotes the usual inner product in L2 and (·, ·)4/3,4, (·, ·)W1,4/3,W−1,4 and (·, ·)H−1,H1 stand
for the duality pairing in L4,W 1,4/3 and H1 respectively. We use ‖ · ‖p in order to denote the Lp(R2;C)-norm. Hs(=Hs(R2)),
s ∈ R stands for the Banach space of elements u ∈ S ′ such that (1 + |ξ|2)

s
2 û ∈ L2 and it is equipped with the norm

‖u‖Hs = ‖(1+ |ξ|2)
s
2 û‖2 where S is the Schwarz space with functions defined on R2 and û stands for the Fourier transform

of u. We will also be using the Besov space Bsp,q(=B
s
p,q(R

2)), 1 ≤ p, q ≤ ∞, s ∈ R, being the Banach space of elements u ∈ S ′
with the norm

‖u‖Bsp,q = ‖F
−1(ηû)‖Lp +


( ∞∑
j=1

(2sj‖F −1(ψjû)‖Lp)q
)1/q

if q <∞,

sup
j≥1
2js‖F −1(ψjû)‖Lp if q = ∞,

where η is a radial function satisfying η ∈ C∞c (R
2) such that η(ξ) = 1 for |ξ| ≤ 1 and η(ξ) = 0 for |ξ| ≥ 2,ψj(ξ) = ψ(2−jξ)

for ψ(ξ) = η(ξ) − η(2ξ) and F −1f stands for the inverse Fourier transform of f when it makes sense. The notations Ḣs
and Ḃsp,q are used for the homogeneous versions of the corresponding spaces. For p ≥ 1, L

p(I; B), I ⊂ R denotes the Banach
space of (classes of) measurable functions u : I → B such that ‖u‖B ∈ Lp(I) where B is any Banach space. J s and Ds are
for the Bessel and Riesz potentials respectively and they are defined as J su = F −1(1+ |ξ|2)

s
2 û, Dsu = F −1|ξ|sû. (S(t))t∈R

represents the solution semigroup for the linear equation iut + δuxx + uyy = 0 (S depends on δ = ±1) and finally a ∨ b,
a ∧ b denote max{a, b} and min{a, b} respectively (see [14] for further details on the function spaces).

2. Conservation laws without regularization

In [1] we considered the Cauchy problem for the following two dimensional nonlinear Schrödinger equation:

iut + δuxx + uyy = K(|u|2)u, δ = ±1 (2.1)

where K̂(f )(ξ) = α(ξ)f̂ (ξ) for f ∈ L2. Here, the symbol α satisfies:

(H1) α is real, even and homogeneous of degree 0,
(H2) α ∈ C∞(R2 \ {(0, 0)}).

We called this equation an almost cubic nonlinear Schrödinger equation (ACNLS) and classified the cases δ = ±1 as
the elliptic and the hyperbolic cases. We have established local well-posedness of the corresponding Cauchy problem in
L2,H1 and H2 ([1, Theorems 3.5, 4.4, 7.6]). We have made use of this local theory to show conservation of mass and energy
conservations. Mass and energy were given by

M(u) =
∫

R2
|u|2dxdy, E(u) =

∫
R2

[
δ|ux|2 + |uy|2 +

1
2
K(|u|2)|u|2

]
dxdy, (2.2)

respectively and mass is naturally defined for L2 solutions, whereas it is possible to define energy for H1 solutions.
Conservation of these quantities was important in obtaining results on the global behaviour of the solutions (see e.g.
[1, Corollary 4.5, Proposition 6.1]).
For the mass conservation, if we begin with H1 solutions, considering H−1–H1 duality product of (2.1) with 2u gives

2i(ut , u)H−1,H1 = 2(δ‖ux‖22 + ‖uy‖
2
2) + 2

∫
R2 K(|u|

2)|u|2dxdy. Since the right hand side is real, we obtain the mass
conservation on [0, T ∗). For the conservation of energy, multiplying (2.1) by 2ūt and then taking the real parts gives
2 Reūt(δuxx + uyy) = K(|u|2)(|u|2)t , from which it follows that

0 =
d
dt

∫
R2
(δ|ux|2 + |uy|2)dxdy+ Re

∫
R2
α(ξ)f̂ (ξ)(̂ft)(ξ)dξ

=
d
dt

[∫
R2
(δ|ux|2 + |uy|2)dxdy+

1
2

∫
R2
K(|u|2)|u|2dxdy

]
,

by using the Parseval identity and the fact that α is even. These formal computations are exact for H2 solutions. Using
continuous dependence results, one can approximate L2 and H1 solutions with H1 and H2 solutions respectively to obtain
the necessary conservations. This is the path followed in the above mentioned paper. An alternative approach is due to
Ozawa, [4]. Instead of approximating the solution with more regular solutions for which the conservation laws follow from
formal computations, we can consider the integral equation corresponding to (2.1). The definition of K with the assumptions
(H1) and (H2) allows us to deduce the facts that Im(K(|u|2)|u|2) = 0 and for G(u) ≡ 1

4

∫
R2 K(|u|

2)|u|2dxdy, G ∈ C1(L4;R)
with G′(u)(v) = Re

∫
R2 K(|u|

2)uv̄dxdy for every v ∈ L4.
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