

Contents lists available at ScienceDirect

Nonlinear Analysis

Uniformly continuous composition operators in the space of bounded φ -variation functions

J.A. Guerrero a,*, H. Leiva b, J. Matkowski c, N. Merentes d

- ^a Universidad Nacional Experimental del Táchira, Dpto. de Matemáticas y Física, San Cristóbal, Venezuela
- ^b Universidad de los Andes, Escuela de Matemáticas, Mérida, Venezuela
- ^c Institute of Mathematics, University of Zielona Góra, Zielona Góra, Poland
- d Universidad Central de Venezuela, Escuela de Matemáticas, Caracas, Venezuela

ARTICLE INFO

Article history:

Received 10 September 2009 Accepted 20 November 2009

MSC:

47B33 26B30

26B40

Keywords:

 φ -variation in the sense of Wiener Uniformly continuous operator Regularization

Composition operator

Jensen equation

ABSTRACT

We prove that, under some general assumptions, a generator of any uniformly continuous Nemytskii operator, mapping a subset of space of bounded variation functions in the sense of Wiener into another space of this type, must be an affine function. As a special case, we obtain an earlier result from Matkowski (in press) [4].

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Let X, Y be real normed spaces and C be a closed convex subset of X. For a fixed real interval I denote by X^I (or Y^I) the set of all functions $f: I \longrightarrow X$ (or $f: I \longrightarrow Y$). If $h: I \times C \longrightarrow Y$ is a given function, then the operator $H: X^I \longrightarrow Y^I$ defined by the formula

$$(Hf)(t) = h(t, f(t)), \quad t \in I$$

$$\tag{1}$$

is called the Nemytskii composition operator generated by the function h.

Let $(BV_{\omega}(I,X), \|\cdot\|_{\omega})$ be the Banach space of functions $f:I\to X$ which are of bounded φ -variation in the sense of Wiener, where the norm $\|\cdot\|_{\omega}$ is defined with the aid of Luxemburg–Nakano–Orlicz seminorm [1–3].

Assume that H maps the set of functions $f \in BV_{\omega}(I, X)$ such that $f(I) \subset C$ into $BV_{\omega}(I, Y)$. In the present paper, we prove that, if H is uniformly continuous, then the left and right regularization of its generator h with respect for the first variable are affine functions in the second variable. This extends the main result of paper [4].

This work was supported by the CDHT-ULA-project: C-1667-09-05-AA.

Corresponding author. Tel.: +58 276 3961819.

E-mail addresses: jaguerrero4@gmail.com, jguerre@unet.edu.ve (J.A. Guerrero), hleiva@ula.ve (H. Leiva), J.Matkowski@wmie.uz.zgora.pl (J. Matkowski), nmer@ciens.ucv.ve (N. Merentes).

2. Preliminaries

In this section we present some definitions and preliminary results related with bounded φ -variation functions in the sense of Wiener.

Let \mathcal{F} be the set of all convex functions $\varphi:[0,\infty)\longrightarrow [0,\infty)$ such that: $\varphi(0^+)=0$ and $\lim_{t\longrightarrow\infty}\varphi(t)=\infty$. Then we have that

Remark 2.1. If $\varphi \in \mathcal{F}$, then φ is continuous and strictly increasing. Indeed, the continuity of φ at each point t > 0 follows from its convexity and continuity at 0 from the assumption $\varphi(0) = \varphi(0^+) = 0$. Suppose that $\varphi(t_1) \geq \varphi(t_2)$ for some $0 < t_1 < t_2$. Then

$$\frac{\varphi(t_1)-\varphi(0)}{t_1-0}=\frac{\varphi(t_1)}{t_1}>\frac{\varphi(t_2)}{t_2}=\frac{\varphi(t_2)-\varphi(0)}{t_2-0},$$

contradicting the convexity of φ .

Definition 2.2. Let $\varphi \in \mathcal{F}$ and $(X, |\cdot|)$ be a real normed space. A function $f \in X^I$ is of bounded φ -variation in the sense of Wiener in I, if

$$v_{\varphi}(f) = v_{\varphi}(f, I) := \sup_{\xi} \sum_{i=1}^{m} \varphi(|f(t_i) - f(t_{i-1})|) < \infty,$$
 (2)

where the supremum is taken over all increasing finite sequences $\xi = (t_i)_{i=0}^m, t_i \in I, m \in \mathbb{N}$.

For $\varphi(t) = t^p$ ($t \ge 0, p \ge 1$), condition (2) coincides with the classical concept of variation in the sense of Jordan [5, Chapter 8] whenever p = 1, and in the sense of Wiener [6] if p > 1. The general Definition 2.2 was introduced by Young [7].

It is known that for all $a, b, c \in I$, $a \le c \le b$ we have $v_{\varphi}(f, [a, c]) \le v_{\varphi}(f, [a, b])$ (that is, v_{φ} is increasing with respect to the interval) and $v_{\varphi}(f, [a, c]) + v_{\varphi}(f, [c, b]) \le v_{\varphi}(f, [a, b])$.

We will denote by $V_{\varphi}(I,X)$ the set of all functions $f \in X^I$ with bounded φ -variation in Wiener sense. This is a symmetric and convex set; but it is not necessarily a linear space. In fact, Musielak and Orlicz proved the following statement: this class of functions is a vector space if, and only if, φ satisfies the δ_2 condition [8]. We denote by $BV_{\varphi}(I,X)$ the linear space of all functions $f \in X^I$ such that $V_{\varphi}(\lambda f) < \infty$ for some constant $\lambda > 0$.

In the linear space $BV_{\varphi}(I,X)$, the function $\|\cdot\|_{\varphi}$ defined by

$$||f||_{\varphi} := |f(a)| + p_{\varphi}(f), \quad f \in BV_{\varphi}(I, X),$$

where

$$p_{\varphi}(f) := p_{\varphi}(f, I) = \inf \left\{ \epsilon > 0 : v_{\varphi}(f/\epsilon) \le 1 \right\}, \quad f \in BV_{\varphi}(I, X), \tag{3}$$

is a norm (see for instance [8]).

For $X = \mathbb{R}$, the linear normed space $(BV_{\varphi}(I, \mathbb{R}), \|\cdot\|_{\varphi})$ was studied by Musielak and Orlicz [8], Ciemnoczołowski and Orlicz [9], and Maligranda and Orlicz [10]. In particular, it is shown in [10] that the space $(BV_{\varphi}(I, \mathbb{R}), \|\cdot\|_{\varphi})$ is a Banach algebra. The functional $p_{\varphi}(\cdot)$ defined by (3) is called *the Luxemburg–Nakano–Orlicz seminorm* [1–3].

In what follows, the symbol $BV_{\varphi}(I,C)$ stands for the set of all functions $f \in BV_{\varphi}(I,X)$ such that $f:I \longrightarrow C$ and C is a subset of X.

Lemma 2.3 (*Chistyakov* [11, Lemma 1]). For $f \in BV_{\omega}(I, X)$, we have:

- (a) if $t, t' \in I$, then $||f(t) f(t')|| \le \varphi^{-1}(1)p_{\varphi}(f)$;
- (b) if $p_{\varphi}(f) > 0$ then $v_{\varphi}(f/p_{\varphi}(f)) \leq 1$;
- (c) for $\lambda > 0$,
 - (c1) $p_{\omega}(f) \leq \lambda$ if and only if $v_{\omega}(f/\lambda) \leq 1$;
 - (c2) if $v_{\varphi}(f/\lambda) = 1$ then $p_{\varphi}(f) = \lambda$.

Property (a) in Lemma 2.3 implies that any function $f \in BV_{\varphi}(I, X)$ is bounded. Indeed, we have $||f|| \le ||f(a)|| + ||f(t) - f(a)||$, whence

$$||f||_{\infty} \le ||f(a)|| + \varphi^{-1}(1)p_{\varphi}(f) < \infty.$$

If $(X, |\cdot|)$ is a Banach space and $f \in BV_{\varphi}(I, X)$, then

$$f^-(t) := \lim_{s \uparrow t} f(s), \quad t \in I^-,$$

exists and is called the *left regularization* of f [12].

Let $BV_{\omega}^{-}(I,X)$ denote the subset in $BV_{\varphi}(I,X)$ that consists of those functions that are left continuous on $I^{-} := I \setminus \{\inf I\}$.

Lemma 2.4 (Chistyakov [11, Lemma 6]). If X is a Banach space and $f \in BV_{\omega}(I, X)$, then $f^- \in BV_{\omega}^-(I, X)$.

Thus, if a function has a bounded φ -variation, then its left regularization is a left continuous function.

Download English Version:

https://daneshyari.com/en/article/842686

Download Persian Version:

https://daneshyari.com/article/842686

Daneshyari.com