

Contents lists available at ScienceDirect

Nonlinear Analysis

Existence of positive entire solutions of a semilinear elliptic problem with a gradient term

Hongtao Xue*, Xigao Shao

School of Science, Yantai Nanshan University, Yantai, Shandong 265713, PR China

ARTICLE INFO

Article history: Received 14 May 2008 Accepted 26 January 2009

MSC: 35J65 35B05 35O75

35R05

Keywords: Semilinear elliptic equations Entire solutions Existence

ABSTRACT

By a sub–supersolution argument and a perturbed argument, we show the existence of entire solutions to a semilinear elliptic problem $-\Delta u + h(x)|\nabla u|^q = b(x)g(u), u > 0$, $x \in \mathbb{R}^N$, $\lim_{|x| \to \infty} u(x) = 0$, where $q \in (1, 2]$, $b, h \in C^{\alpha}_{loc}(\mathbb{R}^N)$ for some $\alpha \in (0, 1)$, $h(x) \geq 0$, b(x) > 0, $\forall x \in \mathbb{R}^N$, and $g \in C^1((0, \infty), (0, \infty))$ which may be singular at 0. No monotonicity condition is imposed on the functions g(s) and g(s)/s.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction and the main results

The purpose of this note is to investigate the existence of entire solutions to the following model problem

$$-\Delta u + h(x)|\nabla u|^{q} = b(x)g(u), \quad u > 0, \ x \in \mathbb{R}^{N}, \quad \lim_{|x| \to \infty} u(x) = 0, \tag{1.1}$$

where $q \in (1, 2]$, $h \in C^{\alpha}_{loc}(\mathbb{R}^N)$ for some $\alpha \in (0, 1)$ is non-negative in Ω , g satisfies

- $(g_1) g \in C^1((0,\infty),(0,\infty));$
- $(g_2) \lim_{s\to 0^+} g(s)/s = \infty;$
- $(g_3) \lim_{s\to\infty} g(s)/s = 0;$

and b satisfies

- (b_1) $b \in C^{\alpha}_{loc}(\mathbb{R}^N)$ and b(x) > 0, $\forall x \in \mathbb{R}^N$;
- (b_2) the linear problem

$$-\Delta u = b(x), \quad u > 0, \ x \in \mathbb{R}^N, \ \lim_{|x| \to \infty} u(x) = 0$$
 (1.2)

has a unique solution $w \in C^{2+\alpha}_{loc}(\mathbb{R}^N)$.

^{*} Corresponding author. E-mail address: ytxiaoxue@yahoo.com.cn (H. Xue).

First, let us review the following model

$$-\Delta u = b(x)g(u), \quad u > 0, \ x \in \mathbb{R}^N, \ \lim_{|x| \to \infty} u(x) = 0.$$
 (1.3)

Problem (1.3) arises from many branches of mathematics and applied mathematics. It was discussed and extended to more general problems in a number of works, for instance, [1–13]. When the equation is considered over a bounded smooth domain Ω instead of \mathbb{R}^N , the corresponding problem was studied, for example, in [14–25] and the references cited therein.

For $g(u) = u^{-\gamma}$ with $\gamma > 0$, if b satisfies (b_1) and the following condition

$$(b_3)$$
 $\int_0^\infty r\phi(r)dr < \infty$, where $\phi(r) = \max_{|x|=r} b(x)$,

Lair and Shaker [9] showed that problem (1.3) has a unique solution $u \in C^{2+\alpha}_{loc}(\mathbb{R}^N)$. Later, Lair and Shaker [10] and Zhang [13] extended the above result to the more general g which satisfies (g_1) and

 (g_4) g is non-increasing on $(0, \infty)$ and $\lim_{s\to 0^+} g(s) = \infty$.

Cirstea and Rădulescu [3] also extended the above results to the more general g which satisfies (g_1) , (g_2) and

- $(g_5) \ \frac{g(s)}{s+s_0}$ is decreasing on $(0,\infty)$ for some $s_0>0$;
- (g_6) g is bounded in a neighborhood of ∞ .

Recently, Dinu [26] further generalized the above results to the cases that

- (i) b satisfies (b_1) and (b_3) ;
- (ii) g satisfies (g_1) , (g_3) and
- (g_7) $\frac{g(s)}{s}$ is decreasing on $(0, \infty)$;

and $\lim_{|x|\to\infty}u(x)=l>0$ instead of $\lim_{|x|\to\infty}u(x)=0$ in problem (1.3); or the following cases that

- (i_1) b satisfies (b_1) and
- (b_4) $\int_0^\infty r^{N-1}\phi(r)\mathrm{d}r < \infty$, where $N \ge 3$;
- (ii₂) g satisfies (g_1) – (g_3) and
- (g_8) g is increasing on $(0, \infty)$.

Afterwards, Goncalves and Santos [8] also generalized the above results to the case that g satisfies (g_1) – (g_3) and (g_7) . Ye and Zhou [12, Theorem 4.2] showed that if g satisfies (g_1) and is non-increasing on $(0, \infty)$, b satisfies (b_1) , then problem (1.3) admits a solution if and only if b satisfies (b_2) . Moreover, if a solution of problem (1.3) exists, it is unique.

Now let us return to problem (1.1).

When $g(u) = u^{-\gamma}$ with $\gamma > 0$, $q \in (1, 2]$, $h \in C^{\alpha}_{loc}(\mathbb{R}^N)$ is non-negative in \mathbb{R}^N , b satisfies (b_1) and (b_3) , Dinu [26] showed that problem (1.1) has a unique solution $u \in C^{2+\alpha}_{loc}(\mathbb{R}^N)$. Recently, the author [27] showed that when $q \in (0, 1)$, $h \in C^{\alpha}_{loc}(\mathbb{R}^N)$ for some $\alpha \in (0, 1)$, h(x) < 0, $\forall x \in \mathbb{R}^N$, g satisfies (g_1) – (g_3) , and b satisfies (b_3) instead of (b_2) , problem (1.1) have at least one solution.

In this paper we continue to consider the existence of entire solutions to problem (1.1) for the functions g(s) and g(s)/s which do not have monotonicity.

Our main result is summarized in the following theorem.

Theorem 1.1. Let $q \in (1, 2]$, $h \in C^{\alpha}_{loc}(\mathbb{R}^N)$ be non-negative in \mathbb{R}^N , and b satisfy (b_1) and (b_2) . If g satisfies (g_1) – (g_3) , then problem (1.1) has at least one solution $u \in C^{2+\alpha}_{loc}(\mathbb{R}^N)$.

Remark 1.1 ([27]). The condition (b_3) implies (b_2) , but (b_2) is invariant under translations.

Remark 1.2. Some basic examples of the functions, which satisfy (g_1) – (g_3) , are

- (i) $u^{-\gamma} + u^p + \sin f(u) + 1$, where $\gamma > 0$, p < 1 and $f \in C^2(\mathbb{R})$;
- (ii) $e^{1/u^{\gamma}} + u^{p} + \cos f(u) + 1$, where $\gamma > 0$, p < 1 and $f \in C^{2}(\mathbb{R})$;
- (iii) $u^{-\gamma} \ln^{-q_1}(1+u) + \ln^{q_2}(1+u) + u^p + \sin f(u) + 2$ with $f \in C^2(\mathbb{R}), \gamma > 0, p < 1, q_2 > 0$ and $q_1 > 0$;
- (iv) $u^{-\gamma} + \arctan f(u) + \pi$ with $f \in C^2(\mathbb{R})$ and $\gamma > 0$.

Remark 1.3. The technique of this paper in our proofs can be applied to the more general problem

$$-\Delta u + h(x)|\nabla u|^q = b(x)g(u) + a(x)f(u), \quad u > 0, \ x \in \mathbb{R}^N, \ \lim_{|x| \to \infty} u(x) = 0,$$

where $q \in (1, 2], h \in C^{\alpha}_{loc}(\mathbb{R}^N)$ is non-negative in \mathbb{R}^N , a and b satisfy (b_1) and (b_2) , g and f satisfy (g_1) , g+f satisfies $(g_2)-(g_3)$.

The paper is organized as follows. In Section 2 we give some preliminary considerations. Finally we show the existence of solutions to problem (1.1).

Download English Version:

https://daneshyari.com/en/article/842767

Download Persian Version:

https://daneshyari.com/article/842767

<u>Daneshyari.com</u>