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a b s t r a c t

In this paper we classify the centers and isochronous centers for a class of polynomial
differential systems inR2 of degree d that in complex notation z = x+ iy can be written as

ż = iz + (zz)
d−4
2 (Az3z + Bz2z2 + Cz4),

where d ≥ 4 is an arbitrary even positive integer and A, B, C ∈ C. Note that if d = 4 we
obtain a special case of quartic polynomial differential systems which can have a center at
the origin.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction and statement of the main results

In this paperwe consider the polynomial differential systems in the real (x, y)-plane that has a singular point at the origin
with eigenvalues±i and that can be written as

ż = iz + (zz)
d−4
2 (Az3z + Bz2z2 + Cz4), (1)

where z = x+ iy, d ≥ 4 is an arbitrary even positive integer and A, B, C ∈ C. The vector field associated with this system is
formed by the linear part iz and by a homogeneous polynomial of degree d formed by threemonomials in complex notation.
In real notation the number of monomials increases with d. Clearly the origin is either a weak focus or a center, see for
instance [1,2].
For such systems we want to determine the conditions that ensure that the origin of (1) is a center or an isochronous

center. Of course, these systems for d = 4 coincide with a class of quartic polynomial differential system. Sowe call the class
of polynomial differential system (1) of even degree d ≥ 4 the quartic-like systems.
The problem of characterizing the centers and isochronous centers has attracted the attention ofmany authors. However

there is only one family of polynomial differential systems for which we have the complete classification of the centers
and isochronous centers, the family of quadratic polynomial differential systems, or simply quadratic systems. Quadratic
systems having a center were classified by Dulac in [3], Kapteyn in [4,5], Bautin in [6], Żoła̧dek in [7], and quadratic systems
having an isochronous center where characterized by Loud in [8]. The centers of the cubic systems with homogeneous
nonlinearities were classified by [9,10], and the isochronous centers for such cubic systems were characterized by Pleshkan
in [11]. However we are very far away from obtaining a complete classification of the centers and of the isochronous centers
for the polynomial differential systems of degree 3, and evenmore so if the degree is higher. For a good survey on the known
results on isochronous centers see [12].

∗ Corresponding author.
E-mail addresses: jllibre@mat.uab.cat (J. Llibre), cvalls@math.ist.utl.pt (C. Valls).

0362-546X/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2009.01.223

http://www.elsevier.com/locate/na
http://www.elsevier.com/locate/na
mailto:jllibre@mat.uab.cat
mailto:cvalls@math.ist.utl.pt
http://dx.doi.org/10.1016/j.na.2009.01.223


3120 J. Llibre, C. Valls / Nonlinear Analysis 71 (2009) 3119–3128

The main result in this paper is the following one.

Theorem 1. For d ≥ 4 even the following statements holds for system (1).
(a) It has a center at the origin if and only if one of the following two conditions holds.
(a.1) 3A+ 2B = 0,
(a.2) Im(AB) = Im(A5C) = Im(B

5
C) = 0.

(b) It has an isochronous center at the origin if and only if one of the following two conditions holds.
(b.1) C = 0, B = A,
(b.2) C = 0, B = (d− 2)A/d.
The paper is devoted to the proof of Theorem 1. To do so we have structured the paper as follows. In Section 2 we

introduce some preliminaries that will be used in the paper, in Section 3 we provide the proof of Theorem 1(a), while the
proof of Theorem 1(b) is given in Section 4.

2. Preliminaries

The resolution of Theorem 1 needs the effective computation of the Liapunov constants aswell as of the period constants.
We write

A = a1 + ia2, B = b1 + ib2, C = c1 + ic2.
Now in polar coordinates (r, θ), given by r2 = zz and θ = arctan(Imz/Rez), system (1) becomes

dr
dθ
=

F(θ) rd

1+ G(θ) rd−1
, (2)

where
F(θ) = (a1 + b1) cos θ − (a2 − b2) sin θ + c1 cos 5θ + c2 sin 5θ,
G(θ) = (a2 + b2) cos θ + (a1 − b1) sin θ + c2 cos 5θ − c1 sin 5θ.

(3)

If system (1) has a center for r > 0 sufficiently small all the periodic orbits of this center are contained in the region
θ̇ > 0, and consequently they are also periodic orbits of the differential equation (2).
The transformation (r, θ) 7→ (ρ, θ) defined by

ρ =
rd−1

1+ G(θ) rd−1
, (4)

in a sufficiently small neighborhood of the origin is a diffeomorphismwith its image. As far as we know the first in use in this
transformation was Cherkas in [13]. If we write Eq. (2) in the variable ρ, we obtain the following Abel differential equation

dρ
dθ
= [−(d− 1)G(θ)F(θ)]ρ3 + [(d− 1)F(θ)− G′(θ)]ρ2

= A(θ)ρ3 + B(θ)ρ2 + Cρ. (5)
The solution ρ(θ, γ ) of (5) satisfying that ρ(0, γ ) = γ can be expanded in a convergent power series of γ ≥ 0 when γ

is sufficiently small. Thus

ρ(θ, γ ) = ρ1(θ)γ + ρ2(θ)γ
2
+ ρ3(θ)γ

3
+ · · · (6)

with ρ1(θ) = 1 and ρk(0) = 0 for k ≥ 2. Let P : [0, γ0] → R be the Poincaré map defined by P(γ ) = ρ(2π, γ ) and for
a convenient γ0 > 0. Then the values of ρk(2π) for k ≥ 2 control the behavior of the Poincaré map in a neighborhood of
ρ = 0. Therefore system (1) has a center at the origin if and only if ρ1(2π) = 1 and ρk(2π) = 0 for every k ≥ 2. Assuming
that ρ2(2π) = · · · = ρm−1(2π) = 0we say that vm = ρm(2π) is them-th Liapunov or Liapunov–Abel constant of system (1).
The set of coefficients for which all the Liapunov constants vanish is called the center variety of the family of polynomial

differential systems (1). By the Hilbert Basis Theorem the center variety is an algebraic set. Necessary conditions to have a
center at the origin will be obtained by finding the zeros of the Liapunov constants.
We note that the center manifold, i.e. the space of systems (1) with a center at the origin, is invariant with respect to the

action group C∗ of changes of variables z → ξz:
A→ ξ (d−6)/2ξ̄ (d−4)/2ξ 3ξ̄A, B→ ξ (d−6)/2ξ̄ (d−4)/2ξ 2ξ̄ 2B, C → ξ (d−6)/2ξ̄ (d−4)/2ξ̄ 4C .

In order to show the sufficiency of the found conditions for the center manifold, we will use the so-called Linear Type
Center Theorem by looking for the existence of a local analytic first integral defined in a neighborhood of the origin, or we
will show that system (1) is reversible. We recall that system (1) is reversible with respect to a straight line if it is invariant
under the change of variablesw = eiγ z, τ = −t for some γ is real. For system (1) we have the following result whose proof
can be found in [14].

Lemma 2. System (1) is reversible if and only if A = −Aeiγ , B = −B̄e−iγ and C = −Ce−5iγ , for some γ ∈ R. Furthermore in
this situation the origin of system (1) is a center.
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