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a b s t r a c t

Recently I. Capuzzo Dolcetta, F. Leoni and A. Porretta obtained a very surprising regularity
result for fully nonlinear, superquadratic, elliptic equations by showing that viscosity
subsolutions of such equations are locally Hölder continuous, and even globally if the
boundary of the domain is regular enough. The aim of this paper is to provide a simplified
proof of their results, together with an interpretation of the regularity phenomena, some
extensions and various applications.
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1. Introduction

In [1], Capuzzo Dolcetta, Leoni and Porretta obtain a very surprising regularity result for fully nonlinear, superquadratic,
elliptic equationswhich is described very easily in theirmain examplewhich is the one of viscousHamilton–Jacobi Equations

− Tr(A(x)D2u)+ |Du|p + λu = f (x) inΩ, (1.1)

where Ω is an open subset of RN , λ ≥ 0, p > 2 and A, f are continuous functions taking values respectively in the set of
non-negative, N × N symmetric matrices and R. They show that if u is a locally bounded, upper semicontinuous viscosity
subsolution of (1.1) then u is locally Hölder continuous with exponent α = p−2

p−1 . Furthermore they prove that the local C
0,α-

bound depends only on local L∞-bounds on A, f and λu−. They also provide global regularity results in the case when the
boundary ∂Ω has a sufficient regularity, namely when the boundary is Lipschitz continuous and satisfies an interior sphere
condition.
These results are very unusual and surprising since they provide the regularity of subsolutions of degenerate equations

with a superquadratic growth inDu, whereasmost of the regularity results for elliptic equations concern solutionsofuniformly
elliptic equations with suitable (subquadratic) growth conditions. At this point, it is worth mentioning the famous work of
Lasry and Lions [2] where Eq. (1.1) is studied in full detail, both in the sub and superquadratic cases, when the second-order
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term is the laplacian (A ≡ Id): several local gradient bounds are provided by using Bernstein’smethod (see also [3] for results
in this directions) together with various estimates on the solutions, and all these properties are used to prove existence,
uniqueness results in different contexts (infinite boundary conditions, data which are blowing up at the boundary, ergodic
problem, . . . ). Most probably, some of their results are still true for (1.1) even if we allow A to degenerate but, at least, their
regularity results are valid only for solutions.
Coming back to [1], the way the authors explain it is through the case A ≡ 0 for which one has obviously a Lipschitz

bound for subsolutions (since Du is clearly bounded) and for general A, the viscous Hamilton–Jacobi Equation can be seen
as a perturbation of the first-order equation and keeps, at least partially, a similar property when the power of Du is large
enough, namely larger than 2.
The aim of the present paper is threefold:

(i) to give a slightly simpler proof of this result in a more general setting,
(ii) to provide an interpretation of such property in terms of ‘‘state-constraint problems’’,
(iii) to use this result to obtain, for superquadratic equations, new results for the generalized Dirichlet problem (in the sense

of viscosity solutions), for ergodic problems and homogenization problems.

In order to be more specific, we come back to Eq. (1.1) and we examine again the case A ≡ 0: if u is a subsolution of this
equation, then

|Du|p ≤ f (x)− λu inΩ,

and if we assume also that λ = 0, we have a gradient bound which is independent of the L∞-norm of u. And the same
property is true for λ 6= 0 if u is bounded from below.
One does not expect such property to be true for elliptic equations and, in general, all the C0,α or Lipschitz bounds depend

on (local) L∞-bounds on u. But, as we already mention it above, the authors prove in [1] that the C0,α-bound is still true for
general A under the same conditions as for the first-order equation.
Our approach, whose general framework is described in Section 2.1, shows why both situations are very similar: roughly

speaking, if u is a subsolution of a general equation, we are not going to argue directly on this equation but on a simpler
equation for which u is still a subsolution; for the above first-order equation, clearly the only important information is that

|Du|p ≤ ‖f ‖∞ + ‖λu−‖∞,

where the L∞-norm is either a local or a global norm, and this step can be seen as a replacement of a complicated equation
by a simpler one. As this (very simple) example shows it, this replacement may depend on (local) L∞-bounds of u (in the
case λ 6= 0) but once this step is done then the (local) L∞-bounds will play not role anymore.
In order to obtain the C0,α-bounds, the key argument consists in building, for the new equation, a family of supersolutions

(wr)r in balls of radius r � 1: these functions are used to control from above the local variations of the subsolution
and, of course, this control gives the Hölder regularity. Two points have to be emphasized: first, the wr are constructed
in such a way that they are supersolutions up to the boundary of the balls (this is called ‘‘state-constraints boundary
conditions’’) and this point is crucial to have a control of the subsolution which is independent of its L∞-bounds when
the new equation does not depend on such L∞-bounds (the case when λ = 0 in (1.1)). Next the construction of such
a family of wr is possible only in the superquadratic case: we address this question, with several variants, at the end of
Section 2.1.
Therefore, in ‘‘good’’ cases (typically when λ = 0 in (1.1)), one can obtain C0,α-bounds which are independent of

any L∞-bounds on the subsolution and if ∂Ω is regular enough, these bounds hold up to the boundary. Section 2.2
is devoted to provide various examples of equations to which the framework of Section 2.1 applies and we formulate
a general result in Section 2.3 in which we obtain local modulus of continuity which are not necessarily of Hölder
type.
Concerning the applications, we are not going to describe them in this introduction; we refer the reader to the

corresponding sections. Section 3 is devoted to the study of the generalized Dirichlet problem for general superquadratic
elliptic equations: assuming or not that the equation is uniformly elliptic, one cannot solve in general the classical Dirichlet
problem: we refer for example to Da Lio and the author [4] where the evolution problem is studied and where it is shown
that loss of boundary data can occur. For (1.1), it is even obvious that the Dirichlet problem cannot be solved in a classical
way since, for smooth enough boundary, the solution is expected to be C0,α up to the boundary and therefore a solution
of the classical Dirichlet problem can exist only in cases when the boundary data satisfies rather restrictive conditions.
We refer to [1] where this question in studied in full details. On the contrary, we concentrate on solving the generalized
Dirichlet problem in the sense of viscosity solutions. The role of C0,α-property in this setting is to provide the continuity
up to the boundary of the subsolutions which is a key property to obtain comparison results. We refer to [5–8] for more
details.
For ergodic and homogenization problems, the role of C0,α-bounds is well-known: it is a key argument to solve ergodic

problem/cell problem and we show how this can be done for superquadratic equations in Sections 4 and 5. We refer to the
bibliography for various references on ergodic and homogenization problems.
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