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a b s t r a c t

The paper is devoted to the Lie symmetries of 2D nonlinear dynamical systems described
by second order partial differential equations. By imposing the invariance condition of the
equations under the action of the Lie symmetry operatorwe obtained a determining system
which could be solved in two directions: (i) to find the symmetries of a concrete equation;
(ii) to obtain all the compatible equations with an imposed form of symmetry algebra.
This paper will pay attention to the indirect problem (ii) and will use the algorithm for
determining the most general 2D equations which belong, following their symmetries, to
the same class with two interesting and important physical models: the nonlinear heat
equation and the transfer equation with power-law nonlinearities.

© 2010 Published by Elsevier Ltd

1. Introduction

The Lie theory of symmetry groups for differential equations has been proven to be a powerful tool for studying nonlinear
problems which appear in physics or in other fields of applied mathematics [1–3]. The main idea of Lie’s theory is to
investigate integrability starting from the invariance of the equation under some linear transformations of the variables,
transformations which define the so-called Lie group of symmetries. There are various types of symmetries which can
be identified for various differential equations: point symmetries, contact symmetries, classical, generalized or non-local
symmetries [4–6].
Usually, the direct symmetry problem of evolutionary equations is considered. It consists in determining the symmetries of

a given evolutionary equation and, by using them, to find attached invariants or conservation laws. The specific symmetries
of each differential equation provide important information on the integrability of the equation, or help in finding some of
its particular solutions. This paper will concentrate mainly on the inverse symmetry problem. We raise the question what
is the largest class of evolutionary equations which are equivalent from the point of view of their symmetries. The same
symmetries mean similar invariants and, by similarity reduction, similarly reduced equations. So, the inverse symmetry
problem allows in fact to split a general class of evolutionary equations into many equivalent classes of equations as far as
their invariants and reduced equations are concerned. It is interesting to remark that the well-known equations, apparently
with no connection among themselves, belong to the same class from this point of view.
We shall illustrate this assertion by considering a general class of second order partial differential equations defined in a

(2+1)-dimensional space–time, with the independent variables x, y, t andwith only one dependent variable, u = u(x, y, t).
More precisely, we shall consider an evolutionary equation of the generic form ut = F(t, x, y, u, ux, uy, u2x, u2y, uxy). We
shall propose an algorithm which will allow us to identify the most general form of these types of equations which admit
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the same given symmetry group.Wewill choose a symmetry group corresponding to a linear sector, groupwhich generates
an 8D Lie algebra. The general problem will be formulated in the next section of the paper and, in Section 3, the case of
a Lie symmetry operator with linear coefficient functions will be analyzed. The results will be specified in Section 4 of
the paper for two 2D models represented by the nonlinear heat equation and (mass/heat) transfer equation with power-law
nonlinearities. These nonlinear equations correspond to Lie subalgebras of smaller dimensions. They have always played an
important role in the formation of a correct understanding of qualitative features of various transport processes in chemical
engineering, thermophysics, and power engineering [7]. In non-homogeneousmedia, the diffusion coefficients may depend
on coordinates and even on temperature. There are numerous approximation formulas (among them linear, power-law and
exponential) describing the dependence of the transfer coefficients on temperature or concentration [8]. On the other hand,
we shall see that a model arising from a completely different field, the theory of gravity, namely the Ricci flow model [9]
belongs, as a particular case, to the same class of equations. For each equation we shall consider, the form of the solutions
will be investigated. Some concluding remarks will end the paper.

2. The general setting of the symmetry problem

Let us consider a 2D dynamical system described by a second order partial differential equation of the general form:

ut = A(x, y, t, u)uxy + B(x, y, t, u)uxuy + C(x, y, t, u)u2x + D(x, y, t, u)u2y
+ E(x, y, t, u)uy + F(x, y, t, u)ux + G(x, y, t, u) (1)

with A(x, y, t, u), B(x, y, t, u), C(x, y, t, u),D(x, y, t, u), E(x, y, t, u), F(x, y, t, u),G(x, y, t, u) arbitrary functions of their
arguments.
The general expression of the classical Lie operator which leaves (1) invariant is:

U(x, y, t, u) = ϕ(x, y, t, u)
∂

∂t
+ ξ(x, y, t, u)

∂

∂x
+ η(x, y, t, u)

∂

∂y
+ φ(x, y, t, u)

∂

∂u
. (2)

Following the Lie symmetry theory [10], the invariance condition of the Eq. (1) is given by the relation:

0 = U (2)[ut − A(x, y, t, u)uxy − B(x, y, t, u)uxuy − C(x, y, t, u)u2x − D(x, y, t, u)u2y
− E(x, y, t, u)uy − F(x, y, t, u)ux − G(x, y, t, u)] (3)

where U (2) is the second order prolongation of the operator (2).
The latter relation has the equivalent expression:

0 = −Atϕuxy − Btϕuxuy − Ctϕu2x − Dtϕu2y − Etϕuy − Ftϕux − Gtϕ − Axξuxy − Bxξuxuy
− Cxξu2x − Dxξu2y − Exξuy − Fxξux − Gxξ − Ayηuxy − Byηuxuy − Cyηu2x − Dyηu2y
− Eyηuy − Fyηux − Gyη − Auφuxy − Buφuxuy − Cuφu2x − Duφu2y − Euφuy − Fuφux

−Guφ + φt − Aφxy − Cφ2x − Dφ2y − Bφxuy − Fφx − Bφyux − Eφy. (4)

The functions φt , φx, φy, φ2x, φ2y, φxy will be determined using the general formulas:

φt = Dt [φ − ϕut − ξux − ηuy] + ϕu2t + ξuxt + ηuyt
φx = Dx[φ − ϕut − ξux − ηuy] + ϕutx + ξu2x + ηuxy
φy = Dy[φ − ϕut − ξux − ηuy] + ϕuty + ξuxy + ηu2y
φxy = Dxy[φ − ϕut − ξux − ηuy] + ϕutxy + ξuxxy + ηuxyy
φ2x = D2x[φ − ϕut − ξux − ηuy] + ϕutxx + ξuxxx + ηuxxy
φ2y = D2y[φ − ϕut − ξux − ηuy] + ϕutyy + ξuxyy + ηuyyy.

(5)

By extending the relations (5), substituting them into the condition (4) and then equating to zero the coefficient functions
of various monomials in derivatives of u, the following partial differential system with 24 equations is obtained:

[A2 + 2CD]ϕx + 3ADϕy = 0

[A2 + 2DC]ϕy + 3ACϕx = 0
Aϕx + 2Dϕy = 0
ϕu = 0
ξ2u = 0
η2u = 0
Aϕy + 2Cϕx = 0
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