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a b s t r a c t

In 1981, Dale Alspach modified the baker’s transform to produce the first example of a
nonexpansive mapping T on a weakly compact convex subset C of a Banach space that is
fixed point free. By Zorn’s lemma, there exist minimal weakly compact, convex subsets of
C which are invariant under T and are fixed point free.
In this paper we produce an explicit formula for the nth power of T , T n, and prove that

the sequence (T nf )n∈N converges weakly to ‖f ‖1 χ[0,1], for all f ∈ C . From this we derive a
characterization of the minimal invariant sets of T .

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In 1981, Dale Alspach modified the baker’s transform (or baker’s transformation) from ergodic theory, to produce an
example of a nonexpansive mapping on a weakly compact, convex subset of L1[0, 1] that is fixed point free [1]. There are
several examples of non-expansive mappings on weakly compact, convex sets that are fixed point free [2–4]. Interestingly,
each of thesemappings involves or resembles Alspach’s example. So, Alspach’s example remains the typical example of such
a pair consisting of a mapping and a set.
Let (X, ‖ · ‖) be a Banach space and B ⊆ X . Recall that U : B→ B is said to be nonexpansive if
‖U(x)− U(y)‖ ≤ ‖x− y‖, for all x, y ∈ B.

We assume that B is nonempty, bounded, closed and convex. A set D ⊆ B is said to be U-invariant if U(D) ⊆ D. Nonempty,
closed, convex, U-invariant subsets of B are of interest. In particular, a nonempty, closed, convex, U-invariant set D ⊆ B is
said to beminimal invariant if whenever A ⊆ D is nonempty, closed, convex and U-invariant, it follows that A = D. Minimal
invariant sets are in this sense the smallest U-invariant subsets of B. Clearly, the singleton containing any fixed point of U is
minimal invariant. In this way, minimal invariant sets generalize the concept of fixed points. For more onminimal invariant
sets of nonexpansive mappings we refer the reader to [5,6].
For any nonexpansive fixed point free mapping on a weakly compact, convex set, there exist a minimal invariant subset

of positive diameter, by an application of Zorn’s lemma [7]. Theseminimal invariant sets have not previously been explicitly
characterized for Alspach’s example or any other such mapping [6,5,8]. We will describe all minimal invariant sets of
Alspach’s mapping, T . The general idea will be to find a formula for T n. Next, we will show that (T nf )n∈N converges weakly
for all f ∈ C . Then, we will use [6] to provide a description of all the minimal invariant sets of T .
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We note that the results in this paper, except for Section 4, form part of the first author’s Ph.D. Thesis [9].

2. Preliminaries

Wewill denote byN the set of all positive integers and byZ the set of all integers. As usual,R is the set of all real numbers.
We begin with some definitions. For all n ∈ N, for all i ∈ ∆n := {0, . . . , 2n − 1}, define E(i,n) :=

[ i
2n ,

i+1
2n
)
. Also, let

C :=
{
f ∈ L1[0, 1] : 0 ≤ f (x) ≤ 1,∀x ∈ [0, 1]

}
and

S :=

{
s ∈ L1[0, 1] : s =

n∑
i=1

aiχE(i,n) where ai ∈ R and n ∈ N

}
.

Next, for all α, β ∈ R, α ∧ β := min{α, β} and α ∨ β := max{α, β}. Fix a, b ∈ R with a < b and fix c ∈ R. Then we have
the modular property:

(a ∨ c) ∧ b = a ∨ (c ∧ b).

Define cut0(a, b, c) := (a∨ c)∧ b. Note that cut0(a, b, c) = a, if c < a; cut0(a, b, c) = c , if a ≤ c ≤ b; and cut0(a, b, c) = b,
if c > b. We further define

cut(a, b, c) := cut0(a, b, c)− a = ((a ∨ c) ∧ b)− a = (a ∨ (c ∧ b))− a.

The following lemma contains a few properties of the cut function that we will use later.

Lemma 2.1. Fix a, b ∈ R with a < b and fix c ∈ R.
(1) Fix arbitrary real-valued, Lebesgue-measurable functions f and g on [0, 1]. Let E := supp(f ) and F := supp(g) and suppose
that E ∩ F has Lebesgue measure zero. Then, for all x ∈ [0, 1],

cut(a, b, f (x)+ g(x)) = cut(a, b, f (x))χE(x)+ cut(a, b, g(x))χF (x).

(2) For all t > 0,

cut(ta, tb, tc) = t cut(a, b, c).

(3) For all p, q ∈ R with 0 ≤ p < q ≤ b− a,

cut(p, q, cut(a, b, c)) = cut(a+ p, a+ q, c).

Proof. Properties (1) and (2) are easy to check. Let us see why (3) holds.
Fix p, q ∈ Rwith 0 ≤ p < q ≤ b− a. Then

cut(p, q, cut(a, b, c)) = (p ∨ cut(a, b, c)) ∧ q− p
= (p ∨ [a ∨ (c ∧ b)− a]) ∧ q− p
= ((p+ a) ∨ [a ∨ (c ∧ b)] − a) ∧ q− p
= ((p+ a) ∨ [a ∨ (c ∧ b)]) ∧ (q+ a)− a− p
= ((a+ p) ∨ a ∨ (c ∧ b)) ∧ (a+ q)− (a+ p).

Recall that p ≥ 0, and so a+ p ≥ a. Therefore,

cut(p, q, cut(a, b, c)) = ((a+ p) ∨ (c ∧ b)) ∧ (a+ q)− (a+ p).

But p < b− a ⇐⇒ a+ p < b. By the modular property, and the fact that a+ q ≤ b,

cut(p, q, cut(a, b, c)) = (((a+ p) ∨ c) ∧ b) ∧ (a+ q)− (a+ p)
= ((a+ p) ∨ c) ∧ b ∧ (a+ q)− (a+ p)
= ((a+ p) ∨ c) ∧ (a+ q)− (a+ p)
= cut(a+ p, a+ q, c). �

Throughout this paper, we will extend real-valued, measurable functions f on [0, 1] to R by defining f (x) := 0 for
x ∈ R \ [0, 1]. We define the mapping T : C → C in the following way. For all f ∈ C , for each x ∈ [0, 1],

(Tf )(x) := cut (0, 1, 2f (2x)) χE(0,1)(x)+ cut (1, 2, 2f (2x− 1)) χE(1,1)(x)

= ((0 ∨ 2f (2x)) ∧ 1− 0) χ[0,1/2)(x)+ ((1 ∨ 2f (2x− 1)) ∧ 2− 1) χ[1/2,1)(x)
= (2f (2x) ∧ 1) χ[0,1/2)(x)+ ((2f (2x− 1) ∨ 1)− 1) χ[1/2,1)(x).
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