

Contents lists available at ScienceDirect

Nonlinear Analysis

Some notes on a nonlinear degenerate parabolic equation*

Wen-Shu Zhou

Department of Mathematics, Dalian Nationalities University, 116600, China

ARTICLE INFO

Article history: Received 17 March 2008 Accepted 10 October 2008

Keywords:
Degenerate parabolic equation
Weak solution
Nonexistence
Decay estimate
Blow-up

ABSTRACT

In this note we study nonexistence and long time behavior of solutions for a nonlinear degenerate parabolic equation of non-divergence type. In addition, we also construct some special explicit solutions which may blow up in finite time.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In this note we study nonexistence and long time behavior of nonnegative solutions for the degenerate parabolic equation

$$\frac{\partial u}{\partial t} = u \operatorname{div}(|\nabla u|^{p-2} \nabla u) + \gamma |\nabla u|^p \quad \text{in } \Omega_{\infty} = \Omega \times (0, +\infty), \tag{1}$$

with the Dirichlet boundary condition

$$u(x,t) = 0 \quad \text{on } \partial\Omega \times (0,\infty),$$
 (2)

and the initial condition

$$u(x,0) = u_0(x) \quad \text{in } \Omega, \tag{3}$$

where $\Omega \subset \mathbb{R}^N$ $(N \ge 1)$ is a bounded domain with appropriately smooth boundary $\partial \Omega$, p > 1, $\gamma > 0$ and $u_0 \ge 0$.

We refer the reader to [1] and [2] for the motivation and references concerning the study of (1).

Since (1) may be degenerate at points where u = 0 or $|\nabla u| = 0$, we consider its weak solutions.

Definition 1.1. A nonnegative function u is called a weak solution of problem (1)–(3) if, for any T > 0, the following conditions are satisfied:

(a)
$$u \in L^{\infty}(\Omega_T) \cap L^p(0, T; W_0^{1,p}(\Omega))$$
 with $(u^{\mu})_t \in L^2(\Omega_T)$;

(b) for any $\varphi \in C_0^{\infty}(\Omega_T)$, there holds

$$\iint_{\Omega_T} \left(-u \frac{\partial \varphi}{\partial t} + u |\nabla u|^{p-2} \nabla u \nabla \varphi + (1-\gamma) |\nabla u|^p \varphi \right) dx dt = 0;$$

$$\begin{array}{l} \text{(c) } \lim_{t\rightarrow 0^+}\int_{\Omega}|u^{\mu}(t)-u^{\mu}_0|\mathrm{d}x=0.\\ \mathrm{Here}\ \Omega_T=\Omega\times(0,T), \mu=p\gamma/[2(p-1)]+1/2. \end{array}$$

[☆] Supported by Dalian Nationalities University and Tianyuan Fund (no.10626056). E-mail address: wolfzws@163.com.

The following existence theorem can be found in [1] for $p \ge 2$ and [2] for 1 .

Theorem 1.1. Let $p>1, 0<\gamma<1$, and let $0\leqslant u_0\in C(\overline{\Omega})\cap W_0^{1,p}(\Omega)$. Then problem (1)–(3) admits a weak solution.

In the present paper, by a standard energy method, we first obtain the following results on nonexistence and long time behavior of solutions.

Theorem 1.2. Let p > 2, and let $0 \le u_0$, $0 < A = \|u_0\|_{L^{1+\mu}(\Omega)} < \infty$. Then:

- (a) If $\gamma > \frac{3(p-1)}{p-2}$, then problem (1)–(3) has no weak solutions.
- (b) If $0 < \gamma \leqslant \frac{3(p-1)}{n-2}$, and if u is a weak solution of problem (1)–(3), then we have

$$\|u(t)\|_{L^{1+\mu}(\Omega)} \le (Ct + A^{1-p})^{-1/(p-1)}, \quad 0 < \gamma < \frac{3(p-1)}{p-2},$$
 (4)

where C is a positive constant independent of t, and

$$||u(t)||_{L^{1+\mu}(\Omega)} = ||u_0||_{L^{1+\mu}(\Omega)}, \quad t > 0, \, \gamma = \frac{3(p-1)}{p-2}.$$
 (5)

Remark 1.1. From Theorem 1.1 and (a) of Theorem 1.2, we see that if $0 < \gamma < 1$, then problem (1)–(3) admits a weak solution, and that if $\gamma > \frac{3(p-1)}{p-2}$ with p > 2, then problem (1)–(3) has no weak solutions. In the case where $1 \le \gamma \le \frac{3(p-1)}{p-2}$ with p > 2, we think that there should be global existence. Unfortunately, restricted by mathematical techniques and methods, we cannot prove this.

The result (b) of Theorem 1.2 shows that if $0 < \gamma < \frac{3(p-1)}{p-2}$, $||u(t)||_{L^{1+\mu}(\Omega)}$ decays with the rate $(Ct + A^{1-p})^{-1/(p-1)}$, and that if $\gamma = \frac{3(p-1)}{p-2}$, $\|u(t)\|_{L^{1+\mu}(\Omega)}$ does not decay as $t \to +\infty$.

If $0 < \gamma \le (p-1)/p$, then $\mu \le 1$. Clearly, any weak solution u of problem (1)–(3) satisfies $\frac{\partial u}{\partial t} \in L^2(\Omega_T)$ for any T > 0 if $0 < \gamma \le (p-1)/p$. For $\gamma \ge 1$, however, this is not valid in general, which can be shown by the following two theorems.

Theorem 1.3. Let p > 1, and let $0 \le u_0$, $0 < A \equiv ||u_0||_{L^1} < \infty$. Then:

- (a) If $\gamma > 1$, then any weak solution u of problem (1)–(3) does not satisfy $\frac{\partial u}{\partial t} \in L^2(\Omega_T)$ for any $T \geqslant 1$ if A is sufficiently large. (b) If $0 < \gamma \leqslant 1$, and if u with $\frac{\partial u}{\partial t} \in L^2(\Omega_T)$ for some T > 0 is a weak solution of problem (1)–(3), then

$$||u(t)||_{L^1(\Omega)} \le (Ct + A^{1-p})^{-1/(p-1)}, \quad 0 < t < T, 0 < \gamma < 1,$$
 (6)

where C is a positive constant independent of T, and

$$\|u(t)\|_{L^1(\Omega)} = \|u_0\|_{L^1(\Omega)}, \quad 0 < t < T, \gamma = 1.$$
 (7)

Theorem 1.4. Let p > 2, $\gamma = 1$, and let $0 \le u_0$, $0 < A = \|u_0\|_{L^{\frac{4p-3}{2(p-1)}}(\Omega)} dx < \infty$. Then any weak solution u of problem (1)–(3) does not satisfy $\frac{\partial u}{\partial t} \in L^2(\Omega_T)$ for sufficiently large T.

In addition, we also construct some special explicit solutions of (1).

Let $\alpha > 0$, $\beta \ge 0$, $x_0 \in \mathbb{R}^N$, and define

$$T_{\alpha} = \alpha^{-1} \left(N + \frac{p\gamma}{p-1} \right)^{-1},$$

$$W_{\alpha}(t) = 1 - \alpha \left(N + \frac{p\gamma}{p-1} \right) t, \quad t \geqslant 0,$$

$$\psi_{0}(x) = \frac{p-1}{p} |x - x_{0}|^{p/(p-1)}, \quad x \in \mathbb{R}^{N},$$

and

$$U_{\alpha\beta}(x,t;x_0) = \left[\frac{\alpha}{(p-1)W_{\alpha}}\right]^{1/(p-1)} \psi_0 + \beta W_{\alpha}^{-N/(p\gamma+(p-1)N)} \quad \text{in } \Omega_{T_{\alpha}}.$$

Then we have:

Theorem 1.5. For any $\alpha > 0$, $\beta \geqslant 0$ and $x_0 \in \mathbb{R}^N$, $U_{\alpha\beta}(x, t; x_0)$ satisfies (1) in Ω_{T_α} and blows up at $t = T_\alpha$.

Remark 1.2. By Theorem 1.5, for any T > 0, one can choose $\alpha = T^{-1} \left(N + \frac{p\gamma}{p-1} \right)^{-1}$ such that, for any $\beta \ge 0$ and $x_0 \in \mathbb{R}^N$, $U_{\alpha\beta}(x, t; x_0)$ blows up at t = T.

The proofs of Theorems 1.2–1.5 will be given in Section 2.

Download English Version:

https://daneshyari.com/en/article/842836

Download Persian Version:

https://daneshyari.com/article/842836

<u>Daneshyari.com</u>